17.871: Solutions for Problem Set 1

- Red Text denotes stata code
- Blue text denotes emacs text
- Green text denotes stata output, e.g. tables
- /*Italics*/ denotes comments on code/output

Part I

/*Preamble*/
cd "...
log using pset1_log, replace
set more off /*useful to set this - prevents having to hit the 'more' key*/

Bob 18 95 18
Carol 21 43 27
Ted 14 67 9
Alice 12 23 31

/*Save the emacs output as “test.dat”, then...*/
infile str5 name age test1 test2 using test.dat, clear

/*Or:*/
name age test1 test2
Bob 18 95 18
Carol 21 43 27
Ted 14 67 9
Alice 12 23 31
insheet using test.dat, delimiter(" ")
compress
save "scores.dta", replace

list
+-----------------------------+
<table>
<thead>
<tr>
<th>name</th>
<th>age</th>
<th>test1</th>
<th>test2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bob</td>
<td>18</td>
<td>95</td>
</tr>
<tr>
<td>2.</td>
<td>Carol</td>
<td>21</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>Ted</td>
<td>14</td>
<td>67</td>
</tr>
<tr>
<td>4.</td>
<td>Alice</td>
<td>12</td>
<td>23</td>
</tr>
</tbody>
</table>
+-----------------------------+
Part II

use spae subset 2012.dta, clear

(1)
\texttt{tab q10 /*shows the category labels and totals for q10*/}
\texttt{tab q10, m nol /*shows the associated numerical values, including missing values.*/}

\texttt{gen longwait = .}
\texttt{replace longwait = 1 if q10==4 | q10==5}
\texttt{replace longwait = 0 if q10<4}
/*Missing values are handled by originally setting the new variable to "." and only altering it subsequently for the correct categories*/

(2)
\texttt{collapse (mean) percents=longwait (count) numbers=longwait [aw=weight], by(regstate)}

(3)
\texttt{list in 1/10}

+-------------------------------+
<table>
<thead>
<tr>
<th>regstate</th>
<th>percents</th>
<th>numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alabama</td>
<td>.0760943</td>
<td>174</td>
</tr>
<tr>
<td>2. Alaska</td>
<td>.0222348</td>
<td>165</td>
</tr>
<tr>
<td>3. Arizona</td>
<td>.0761444</td>
<td>67</td>
</tr>
<tr>
<td>4. Arkansas</td>
<td>.1117</td>
<td>170</td>
</tr>
<tr>
<td>5. Californ</td>
<td>.0210003</td>
<td>95</td>
</tr>
<tr>
<td>6. Colorado</td>
<td>.0249651</td>
<td>67</td>
</tr>
<tr>
<td>7. Connecti</td>
<td>.0667891</td>
<td>171</td>
</tr>
<tr>
<td>8. Delaware</td>
<td>.0139119</td>
<td>190</td>
</tr>
<tr>
<td>9. District</td>
<td>.3852806</td>
<td>78</td>
</tr>
<tr>
<td>10. Florida</td>
<td>.3867461</td>
<td>131</td>
</tr>
</tbody>
</table>
+-------------------------------+

(4)
\texttt{save "wait_by_state_2012.dta", replace}
Part III

use sparesubset2014.dta, clear

(1)
gen longwait =.
replace longwait = 1 if q13==4 | q13==5
replace longwait = 0 if q13<4

collapse (mean) percents=longwait (count) numbers=longwait [aw=weight], by(inputstate)

(2)
save "wait_by_state_2014.dta",replace

(3)
rename inputstate regstate /*Variable we use for merging needs same name in both datasets*/
rename percents percents14 /*Give the variables we’re analyzing an identifying suffix*/
rename numbers numbers14
sort regstate /*Both datasets must be sorted in the same order*/
save "wait_by_state_2014.dta",replace

use "wait_by_state_2012.dta"
rename percents percents12
rename numbers numbers12
sort regstate
save "wait_by_state_2012.dta", replace

use "wait_by_state_2014.dta"
merge 1:1 regstate using "wait_by_state_2012.dta"
drop _merge

<table>
<thead>
<tr>
<th>Result</th>
<th># of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>not matched</td>
<td>0</td>
</tr>
<tr>
<td>matched</td>
<td>51 (_merge==3)</td>
</tr>
</tbody>
</table>

/*Shows that matching was done correctly*/
(4)
list if percents14 > percents12

+--+
 regstate perce~14 numbe~14 perce~12 numbe~12
+--+
 6. Colorado .0255073 31 .0249651 67
 20. Maine .0164273 153 .0092996 145
 32. New Mexi .0367988 154 .0340302 158
 38. Oregon .1993681 9 0 0
+--+

Part IV

use spae subset2012.dta, clear

(1)
gen longwait = .
replace longwait = 1 if q10==4|q10==5
replace longwait = 0 if q10<4
/*Leave us with percents who waited 30 mins+, for each value of q4, for each state*/
collapse (mean) percents=longwait (count) numbers=longwait [aw=weight], by(regstate q4)
/*Here's what the first ten lines look like. Notice we have multiple lines for each state*/
list in 1/10

+--+
 regstate q4 percents numbers
+--+
 1. Alabama In perso .0760943 174
 2. Alabama Voted by . 0
 3. Alabama I don't . 0
 4. Alabama . 0
 5. Alaska In perso 0 136
 |--|
 6. Alaska In perso .1432126 29
 7. Alaska Voted by . 0
 8. Alaska I don't . 0
 9. Alaska . 0
 10. Arizona In perso .0881236 61
+--+
/*Now, re-shape to leave one observation per state, which is easier to read*/
drop if q4==.|q4>2 /*Those who didn’t vote or didn’t answer aren’t relevant here*/
reshape wide percents numbers, i(regstate) j(q4)
(note: j = 1 2)

Data long -> wide

Number of obs. 99 -> 51
Number of variables 4 -> 5
j variable (2 values) q4 -> (dropped)
xij variables:
 percents -> percents1 percents2
 numbers -> numbers1 numbers2

/*This tells us that re-shaping split “percents” and “numbers” into two variables with the suffixes “1” and “2”. These relate to the two possible levels of q4: voting on the day, or voting early*/

(2)
list

+------------------------------+
| regstate | percents1 | numbers1 | percents2 | numbers2 |
|-------------------------------+--------------------------------+
2. Alaska	0	136	.1432126	29
3. Arizona	.0881236	61	0	6
4. Arkansas	.0971476	87	.1297159	83
5. Californ	.0213493	94	0	1
6. Colorado	.0436208	37	0	30
7. Connecti	.0546858	168	.6057609	3
8. Delaware	.0140393	188	0	2
9. District	.3842785	129	.3883336	49
10. Florida	.3249482	66	.4485258	65
11. Georgia	.1564134	98	.202052	72
12. Hawaii	.02441	72	.0976297	28
13. Idaho	.0366039	124	.077841	23
15. Indiana	.1627559	132	.0687497	39

/etc...*/
Part V

(1)
use delta_public_00_10.dta, clear

keep if academicyear==2010 /*Restrict to 2010 only*/

tab state /*Turns out there are 59 “states” featured*/
drop if state=="AS"|state=="FM"|state=="GU"|state=="MH"|state=="MP"|state=="PR"|state=="PW"|state=="VI" /*Drop observations not in the 50 states+DC. This is a good geography test*/

/*The easiest strategy to deal with missing data here is simply to drop cases that are missing one or both of revenue and enrolment.*/
keep if fte_count!=. & total03_revenue!=.

/*Now create a dataset of total revenue and total enrolment by state*/
collapse (sum) total03_revenue fte_count, by(state)

generate pcinc = total03_revenue/fte_count /*Generate Per capita revenue*/
sort pcinc /*sort the data by per capita revenue*/
list /*Shows that Massachusetts had the highest per capita revenue at $54,093 and Arizona had the lowest at $14,098*/

(2)
use delta_public_00_10.dta, clear

keep if academicyear==2008|academicyear==2007 /*Now restrict to 07 and 08*/
drop if state=="AS"|state=="FM"|state=="GU"|state=="MH"|state=="MP"|state=="PR"|state=="PW"|state=="VI"
keep state academicyear unitid total03_revenue fte_count
keep if fte_count!=. & total03_revenue!=.

/*Now create a dataset of per capita revenue by state and year*/
collapse (sum) total03_revenue fte_count, by(state academicyear)
gen pcinc = total03_revenue/fte_count
keep state academicyear pcinc
list in 1/10 /*Here’s what it looks like (first 10 rows)*/

+---------------------------------+
<table>
<thead>
<tr>
<th>academ~r</th>
<th>state</th>
<th>pcinc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2007</td>
<td>AK</td>
</tr>
<tr>
<td>2.</td>
<td>2008</td>
<td>AK</td>
</tr>
<tr>
<td>3.</td>
<td>2007</td>
<td>AL</td>
</tr>
<tr>
<td>4.</td>
<td>2008</td>
<td>AL</td>
</tr>
<tr>
<td>5.</td>
<td>2007</td>
<td>AR</td>
</tr>
<tr>
<td>6.</td>
<td>2008</td>
<td>AR</td>
</tr>
<tr>
<td>7.</td>
<td>2007</td>
<td>AZ</td>
</tr>
<tr>
<td>8.</td>
<td>2008</td>
<td>AZ</td>
</tr>
<tr>
<td>9.</td>
<td>2007</td>
<td>CA</td>
</tr>
<tr>
<td>10.</td>
<td>2008</td>
<td>CA</td>
</tr>
</tbody>
</table>
+---------------------------------+

/*It’s easier to calculate the change in revenue by first re-shaping the dataset*/
reshape wide pcinc, i(state) j(academicyear)

/*Calculate change in per capita revenue and then sort*/
gen inc_change = pcinc2008 - pcinc2007
sort inc_change
list

/*Shows that Connecticut had the largest per capita revenue fall: a drop of $28,763*/