Correction to Class Notes
March 17, 2002

In class today, the solutions to the homogeneous linear equation

\[x'' + p^2 x = 0 \]

were given as

\[z_1(t) = \cos pt, \quad z_2(t) = \sin pt, \]

which is fine for \(p^2 \neq 0 \), but Your Humble Instructor has tried to take pains to have all results be valid for \(p = 0 \).

At one point, YHI said that the combination

\[z_1 z_2' - z_1' z_2 = 1, \]

which is demonstrably untrue for \(p \neq 1 \). You can do the math (Craig make funny) to show that this quantity is in general equal to \(p \), if it is recognized that the cosines and sines of a purely imaginary argument are hyperbolic functions.

This would not be a VLD (Very Large Deal) except for the fact that we at one point divided by this quantity. In what we did today, we could take the limit at \(p \to 0 \), but we can do better. Here goes:

Instead of the above, let

\[z_1 = \cos pt \]
\[z_2 = \begin{cases} \frac{\sin pt}{p}, & p \neq 0 \\ t, & p = 0. \end{cases} \]

Then, \(z_2(t) \) is a continuous and real function of \(p \), even for \(p^2 < 0 \), and

\[z_1 z_2' - z_1' z_2 = 1 \]

for all \(p \), which is amazingly great, if you’ll forgive the superlative in a math subject.