Advanced Nonlinear Dynamics and Chaos

(18.386J/2.037J)

George Haller (x2-3064, Rm. 3-354)
Mechanical Engineering
MIT
Logistics

• Lectures: Tuesday, Thursday, 11:00am-12:30pm, Room 1-242

• Office hours: Tuesdays, 3-4:30pm, Rm. 3-352

• Homeworks: - Typically every week, out on Thursday, due in a week
 - Late homework accepted if prior arrangement is made

• Report: - Written report on a research article as part of the final grade.

• Textbook: None required. Recommended books on reserve in Baker library:
 1. Guckenheimer, J., and Holmes, P., *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*
 2. Chicone, C., *Ordinary Differential Equations with Applications*
Course outline

• Normally hyperbolic invariant manifolds
 • Introduction to manifolds
 • Existence and persistence of invariant manifolds
 • Geometric singular perturbation theory

• Global bifurcations
 • Higher-dimensional Melnikov methods
 • Shilnikov orbits
 • Homoclinic bifurcations

• The internal structure of chaos
 • Symbolic dynamics
 • Bernoulli shift map
 • Subshifts of finite type
 • Higher-dimensional chaos
• Hamiltonian dynamical systems
 • Canonical and noncanonical Hamiltonian systems
 • Symplectic geometry
 • Conservation properties, phase space geometry

• Integrable and near-integrable systems
 • Liouville-Arnold theory: existence of invariant tori
 • KAM-theory: persistence of invariant tori
 • Arnold diffusion

• Introduction to infinite-dimensional dynamics
 • Attractors, inertial manifolds
 • PDEs as infinite-dimensional Hamiltonian systems
 • Chaos in infinite dimensions
Motivational example I: Energy-efficient trajectory of a spacecraft along an unstable manifold (Caltech-JPL)

A **halo orbit** around the L1 equilibrium point in the circular restricted three-body problem. (plot by GAIO of Michael Dellnitz and Oliver Junge, Institute of Mathematics, University of Padeborn)
Motivational example II: Unsteady fluid flow separation on no-slip surfaces

Flow separation: particles following the boundary are suddenly ejected into the flow

Separation on the roof of a passenger car
Gillieron & Chometon [1999]

O. Grunberg [2003]
Motivational example III: Mixing of diffusive substances

T=2 periods

T=20 periods

T=50 periods

T=50.5 periods

In function space:

Liu & H. [2003]

Rothstein, Henry, & Gollub [1999]