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1 Introduction

The terms impedance and admittance are commonly used in electrical engineering to describe alge-
braically the dynamic relationship between the current and voltage in electrical elements. In this
chapter we extend the definition to relationships between generalized across and through-variables
within an element, or a connection of elements, in any of the energy modalities described in this
note. The algebraic impedance based modeling methods may be developed in terms of either trans-
fer functions, linear operators, or the Laplace transform. All three methods rationalize the algebraic
manipulation of differential relationships between system variables. In this note we have adopted
the transfer function as the definition of impedance based relationships between system variables.

The impedance based relationships between system variables associated with a single element
may be combined to generate algebraic relationships between variables in different parts of a sys-
tem [1–3]. In this note we develop methods for using impedance based descriptions to derive
input/output transfer functions, and hence system differential equations directly in the classical
input/output form.

2 Driving Point Impedances and Admittances

Figure 1 shows a linear system driven by a single ideal source, either an across-variable source
or a through-variable source. At the input port the dynamic relationship between the across and
through-variables depends on both the nature of the source, and the system to which it is connected.
If the across-variable Vin is defined by the source, the resulting source through-variable Fin depends

SYSTEM

Fin

inSource V

Figure 1: Definition of the driving point impedance of a port in a system.

on the structure of the system; conversely if the through-variable Fin is prescribed by the source,
the across-variable Vin at the port is defined by the system. In either case a differential equation
may be written to describe the dynamics of the resulting variable, and it is possible to define a
transfer function that expresses the dynamic relationship between the dependent and independent
input variables. For a system driven by an across-variable source Vin(s)est the resulting particular
solution Fin(s)est for the through-variable is defined by the transfer function Y (s):

Fin(s) = Y (s)Vin(s), (1)
1D. Rowell 2/28/03
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Figure 2: A series connected inductor and resistor, (b) driven by a voltage source, and (c) driven
by a current source.

where Y (s) is defined to be the generalized driving-point admittance, the input admittance, or
simply the admittance of the system. Similarly for a system driven by a through-variable source,
a transfer function, written Z(s), defines the resulting across-variable particular solution:

Vin(s) = Z(s)Fin(s). (2)

The transfer function Z(s) is defined to be the generalized driving-point impedance, the input
impedance, or more usually the impedance, of the system. Both Z(s) and Y (s) are properties of
the system, and can be used to define a differential equation relationship between Vin and Fin.
From Eqs. (1) and (2) it can be seen that

Z(s) =
Vin(s)
Fin(s)

and Y (s) =
Fin(s)
Vin(s)

, (3)

and while they have been defined in terms of different causalities, the impedance and admittance
are simply reciprocals

Y (s) =
1

Z(s)
. (4)

Any transfer function is a rational function in the complex variable s, therefore if

Z(s) =
P (s)
Q(s)

where P (s) and Q(s) are polynomials in s, then the admittance is

Y (s) =
Q(s)
P (s)

.

Example

Find the input impedance and admittance of the first-order electrical circuit consisting
of a series connected inductor L and resistor R.
Solution: Assume that the system is driven by a voltage source Vin(t), as indicated
in the linear graph shown in Fig. 2b. The continuity condition applied to the input
node requires that Iin(t) = iR(t), and the resulting differential equation is:

L

R

dIin

dt
+ Iin =

1
R
Vin(t). (5)
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Figure 3: Definition of the impedance of a single generalized ideal element

The admittance transfer function is found by substituting s for the derivative and
rearranging,

Y (s) =
Iin(s)
Vin(s)

=
1/R

(L/R)s+ 1
. (6)

Similarly, if the system is assumed to be driven by a current source Is(t), compatibility
around the loop shown in Fig. 2c shows that the terminal voltage Vin(t) is

Vin = vR + vL = L
dIin

dt
+RIin, (7)

and the impedance transfer function is

Z(s) =
Vin(s)
Iin(s)

= Ls+R. (8)

It is easy to show that Z(s) and Y (s) are reciprocals.

2.1 The Impedance of Ideal Elements

Consider a system that consists of a single ideal element connected to an ideal source as shown in
Fig. 3. The elemental relationship between the across and through variables, may be used to define
the impedance or admittance of the element.

The Generalized Capacitance: The elemental relationship for an A-Type element, or general-
ized capacitance C, in any energy domain is:

C
dvc

dt
= fc (9)

where vc is the across-variable on the capacitance, and fc is the through-variable. Because Vin = vc,
and Fin = fc, the definition of the impedance as a transfer function results in

Z(s) =
Vin(s)
Fin(s)

=
1
sC

, (10)

and the admittance of the capacitance is

Y (s) = sC. (11)
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Energy modality: Capacitance Inductance Resistance

Translational 1/sm s/K 1/B

Rotational 1/sJ s/Kr 1/Br

Electrical 1/sC sL R

Fluid 1/sCf sI Rf

Thermal 1/sCt — Rt

Table 1: The impedance of ideal elements. The admittance is the reciprocal of the value given.

The Generalized Inductance: For a T-Type element, or generalized inductance L, the elemental
equation is:

L
dfL

dt
= vL (12)

which gives the impedance and admittance transfer functions:

Z(s) = sL, (13)

Y (s) =
1
sL

. (14)

The Generalized Resistance: For any dissipative D-type element, R, the elemental equation
relating the through and across variables is an algebraic relationship, v = Rf , so that the impedance
and admittance transfer functions are also static or algebraic functions:

Z(s) = R, (15)

Y (s) =
1
R
. (16)

Table 1 summarizes the elemental impedances of the A-type, T-type, and D-type elements
within each of the energy domains.

3 The Impedance of Interconnected Elements

For a system of interconnected lumped parameter elements, the system input impedance (or ad-
mittance) may be found by using a set of simple rules for combining impedances (or admittances)
directly from the system linear graph.

3.1 Series Connection of Elements

Elements sharing a common through-variable are said to be connected in series. For example, a
linear graph shown in Figure 4 consists of a through-variable source Fin connected to three branches
in series. The driving point impedance Z(s) for the complete system is specified by the across-
variable at the input port Vin and the corresponding through-variable Fin. The continuity condition
applied to any node in the graph requires that all elements, including the source, share a common
through variable, or f1 = f2 = f3 = Fin. The compatibility condition applied to the single loop in
the graph requires that

Vin = v1 + v2 + v3. (17)
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The across-variable vi on each branch may be written in terms of the elemental impedance Zi(s)
and the common through-variable

Vin(s) = f1(s)Z1(s) + f2(s)Z2(s) + f3(s)Z3(s)
= Fin(s) [Z1 (s) + Z2 (s) + Z3 (s)]
= Fin(s)Z(s) (18)

where
Z(s) = Z1(s) + Z2(s) + Z3(s) (19)

is the system driving point impedance.
In general, if N branches in a linear graph are connected in series, the equivalent impedance of

the group of branches is the sum of the individual branch impedances:

Z(s) =
N∑

i=1

Zi(s). (20)

The equivalent admittance of the series combination can also be found directly from Eq. (17)
since

Vin(s) =
f1(s)
Y1(s)

+
f2(s)
Y2(s)

+
f3(s)
Y3(s)

= Fin(s)
[

1
Y1(s)

+
1

Y2(s)
+

1
Y3(s)

]

=
Fin(s)
Y (s)

(21)

so that the equivalent admittance of the series elements is

1
Y (s)

=
1

Y1(s)
+

1
Y2(s)

+
1

Y3(s)
, (22)

and in general for N elements connected in series

1
Y (s)

=
N∑

i=1

1
Yi(s)

. (23)

When two elements are connected in series, Eq. (23) reduces to the convenient form:

Y (s) =
Y1(s)Y2(s)

Y1(s) + Y2(s)
. (24)

V    = 0ref

Z (s) Z (s)
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Figure 4: Linear graph of a system with three series connected elements.
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Example

The second-order mechanical system shown in Fig. 5 is driven by a velocity source
Vin(t). Use impedance methods to derive a differential equation relating the force at
the input to the input velocity.

V    = 0ref
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V  (t)in

m

V    = 0ref

V  (t)in

s/K 1/B

1/sm

(a) (b)

Figure 5: Series connected mechanical system.

Solution: The linear graph in Fig. 5 shows that the three elements are connected in
series and share a common through-variable. The relationship between the source force
and velocity is given by

Fin(s) = Y (s)Vin(s)

where Y (s) is the system driving point admittance.

For the mass, spring, and dashpot elements the elemental impedances are (from Table
1):

Zm(s) = 1/ms, ZK(s) = s/K, and ZB(s) = 1/B

so that the total impedance at the input port is

Z(s) = Zm(s) + ZK(s) + ZB(s)
= 1/ms+ s/K + 1/B

=
s2 + (K/B)s+ k/m

Ks
. (25)

The overall admittance could be computed directly from Eq. (22), but we note that

Y (s) =
1

Z(s)
=

Ks

s2 + (K/B)s+K/m
. (26)

From the definition of the admittance Fin(s) = Y (s)Vin(s), so that(
s2 + (K/B)s+K/m

)
Fin(s) = KsVin(s)

which generates the differential equation

d2Fin

dt2
+

K

B

dFin

dt
+

K

m
Fin = K

dVin

dt
. (27)
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Figure 6: A system containing three parallel connected elements.

3.2 The Impedance of Parallel Connected Elements

The linear graph in Fig. 6 shows an across-variable source Vin(t) connected to a parallel combination
of three elements. The compatibility equation for any loop in the graph requires that all elements
have a common across-variable, that is v1 = v2 = v3 = Vin, while the continuity condition at the
top node requires

Fin = f1 + f2 + f3. (28)

Using the impedance relationship F (s) = V (s)/Z(s) (Eq. (2)) for each of the passive branches:

Fin(s) =
v1(s)
Z1(s)

+
v2(s)
Z2(s)

+
v3(s)
Z3(s)

= Vin(s)
[

1
Z1(s)

+
1

Z2(s)
+

1
Z3(s)

]

=
Vin(s)
Z(s)

, (29)

so that the equivalent driving point impedance of the system Z(s) is

1
Z(s)

=
1

Z1(s)
+

1
Z2(s)

+
1

Z3(s)
. (30)

Equation 30 may be generalized to a parallel connection of N branches in a linear graph:

1
Z(s)

=
N∑

i=1

1
Zi(s)

. (31)

As in the case of series admittances, a convenient form of Eq. (31) can be written for two parallel
impedances:

Z(s) =
Z1(s)Z2(s)

Z1(s) + Z2(s)
. (32)

The admittance of a set of N parallel branches in a linear graph may be found by substituting
into Eq. (28), with the result

Y (s) =
N∑

i=1

Yi(s). (33)

Example

Find the impedance and the admittance of the electrical system shown in Fig. 7.
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Figure 7: An electrical system with parallel connected elements.

Solution: For the capacitor, the inductor, and the resistor elements the elemental
impedances are (from Table 1):

ZC(s) = 1/sC, ZL(s) = sL, and ZR(s) = R

so that the overall impedance is:

1
Z(s)

=
1

ZC(s)
+

1
ZL(s)

+
1

ZR(s)
= sC + 1/sL+ 1/R

=
s2 + (1/RC)s+ 1/LC

s/C
, (34)

or
Z(s) =

s/C

s2 + (1/RC)s+ 1/LC
. (35)

The admittance of the parallel combination is simply the sum of the individual admit-
tances.

Y (s) = YC(s) + YL(s) + YR(s)
= sC + 1/sL+ 1/R

=
s2 + (1/RC)s+ 1/LC

s/C
. (36)

which is the reciprocal of the impedance found in Eq. (ii).

3.3 General Interconnected Impedances

Impedances that are not elemental impedances, but which represent combinations of lumped ele-
ments, may be combined and reduced to a single equivalent impedance using the above rules for
combining series and parallel combinations.

For example, the linear graph in Fig. 8 contains four branches and a single source. Each branch
in this graph is described by an impedance, and may represent a single element or a combination
of elements. The two parallel impedances may be combined using Eq. (30), and the two resulting
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Figure 8: System Reduction by combining series and parallel impedances
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Figure 9: The input impedance of two-port elements with a single load element; (a) a transformer,
and (b) a gyrator.

series branches may then be combined using Eq. (20) to give an equivalent system consisting of
two series impedances Z5(s) and Z6(s) as shown in Fig. 8b, where

Z5 (s) = Z1 (s) + Z2 (s)

Z6 (s) =
Z3 (s)Z4 (s)

Z3 (s) + Z4 (s)
.

These two impedances may be then combined as in Fig. 8c, giving the equivalent system input
impedance Z(s):

Z(s) = Z5(s) + Z6(s)

=
(Z1 (s) + Z2 (s)) (Z3 (s) + Z4 (s)) + Z3 (s)Z4 (s)

Z3 (s) + Z4 (s)
. (37)

3.4 Impedance Relationships for Two-Port Elements

Energy conserving two-port elements, are used as transducers between different energy domains.
The impedance of a sub-system on one side of a transforming or gyrating two-port element may
be “reflected” to the other side using the two-port constitutive relationships. Figure 9 shows a
transformer and a gyrator, each with a single impedance element Z3 connected to one side. The
equivalent impedance for the two cases, as seen from the input port may be derived as follows:

Transformer: Let the transformer shown in Fig. 9a have a ratio TF , defined by the constitutive
relationship: [

v1

f1

]
=

[
TF 0
0 −1/TF

] [
v2

f2

]
. (38)
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From the linear graph in Fig. 9, the compatibility and continuity conditions give Vin = v1, Fin = f1,
v3 = v2, and f3 = −f2. Substitution of these conditions into Eq. (38) gives:

[
v1(s)
f1(s)

]
=

[
TF 0
0 −1/TF

] [
Z3(s)f3(s)
−f3(s)

]
. (39)

and since by definition Z1(s) = v1(s)/f1(s),

Z1(s) =
(TF )Z3(s)f3(s)
f3(s)/(TF )

= (TF )2Z3(s). (40)

The input impedance of a two-port element is therefore a factor of (TF )2 times the impedance of
the system on the other side.

Gyrator: The input impedance of a gyrator connected to a system with a known impedance is
derived in a similar manner; with the difference that for a gyrator there is a proportionality between
the across-variable on one side and the through-variable on the other side. Let the gyrator shown
in Fig. 9b have a ratio GY , defined by the constitutive relationship:[

v1

f1

]
=

[
0 GY

−1/GY 0

] [
v2

f2

]
. (41)

The compatibility and continuity conditions yield Vin = v1, Fin = f1, v3 = v2, and f3 = −f2 with
the result [

v1(s)
f1(s)

]
=

[
0 GY

−1/GY 0

] [
Z3(s)f3(s)
−f3(s)

]
, (42)

and since Z1(s) = v1(s)/f1(s)

Z1(s) =
−GY f3(s)

−Z3(s)f3(s)/GY

= (GY )2
1
Z3

= (GY )2Y3. (43)

The input impedance at one side of a gyrator is therefore a factor of (GY )2 times the admittance
of the load connected to the other side. The gyrator effectively changes the nature of the apparent
load. For example, a capacitive element C with an impedance Z = 1/sC connected to one side of
a gyrator appears as an equivalent inductive element with impedance Z = s(GY )2C when reflected
to the other side.

Example

A permanent magnet d.c. motor, modeled as shown in Fig. 10, drives a load that is a
pure inertia J . If the motor produces torque Tm = −Kmim, and generates a back emf
vm = KmΩm, find the equivalent electrical impedance at the motor terminals.
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Figure 10: A second-order system consisting of a d.c. motor with an inertial load.

Solution: The motor is a transforming transducer between the electrical and rotational
domains, and with the linear graph shown shown in Fig. 10 has a ratio TF = 1/Km[

vm

im

]
=

[
Km 0
0 −1/Km

] [
Ωm

Tm

]
. (44)

With the substitution TJ = −Tm, and Ωm = TJZJ where ZJ = 1/sJ , the impedance of
the two-port referred to the electrical side is

Zm =
vm

im
=

K2
m

sJ
(45)

The overall electrical impedance of the motor, as seen from the terminals is therefore

Z = R+ sL+
K2

m

sJ

=
LJs2 +RJs+K2

m

Js
(46)

Example

Find the mechanical impedance as reflected to the piston rod in the translational/hydraulic
system shown in Fig. 11. Assume that the piston has area A and that the pipe in the
hydraulic system has inertance If , and frictional losses modeled as fluid resistance Rf .

Solution: For the piston vp = −qp/A and F = Ap which define a gyrator relationship
with ratio −1/A. The hydraulic system impedance is

Zf = Rf + sIf + 1/sCf

=
IfCfs

2 +RfCfs+ 1
sCf

. (47)

From Eq. (34) the mechanical impedance is

Zm = A2Yf

=
A2Cfs

IfCfs2 +RfCfs+ 1
. (48)
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Figure 11: A fluid system containing a gyrator.

4 Transfer Function Generation Using Impedances

Impedance based modeling methods provide a convenient way of generating the transfer function
of a linear system directly from its linear graph. Consider a single-input single-output system,
with a linear graph containing N branches described by impedances Zi(s), i = 1, . . . , N and a
single source, either an across-variable source Vs or a through variable-source Fs. There are a
total of 2N system variables associated with the passive branches; the N across-variables vi, and
the N through-variables fi. In each branch the impedance ,or admittance, provides an algebraic
relationship between the through and across-variable,

vi(s) = Zi(s)fi(s) or fi(s) = Yi(s)vi(s). (49)

In order to solve the system N additional independent equations are needed.
If a tree containing K branches is constructed from the linear graph, the remaining N − K

branches form the set of links. Compatibility and continuity equations based upon the tree define
the additional required equations. It is not necessary that the tree be the system’s normal tree,
the only restriction is on the location of the input source: if the system contains an across-variable
source it must be represented as a branch tree, and a through-variable source must be contained
in the links. The N independent linear equations may be formed by the following steps:

(1) On each branch in the graph define either the across-variable or the through-variable as a pri-
mary variable. The set of equations is expressed in terms of these N variables, the remaining
N secondary variables are eliminated in the next steps.

(2) Generate N −K compatibility equations by replacing the links into the tree one at a time, and
write the resulting loop equation in terms of the across-variable drops around the loop. If any
of the across-variables in a compatibility equation are not primary variables, the impedance
relationships of Eq. 49 are used to eliminate the secondary across-variable.

(3) Generate K continuity equations by applying the principle of extended continuity to each open
node in the tree, and form an equation in terms of the through-variables entering the closed
volume around the node. If any through-variable is not a primary variable, it is eliminated
by substitution using the admittance relationship of Eq. 49.

Each of the N equations generated in the above steps is a linear algebraic equation in the
N primary variables. While there is considerable freedom in choosing whether the across or the
through-variable should be the primary variable, it is often convenient (but not essential) to select

12



the system output variable as a primary variable. The equations may be rearranged and written
in the form

Zx = U (50)

where Z is a square n × n matrix of impedance based coefficients, x is a column vector of the n
primary variables, and U is a column vector with elements related to the system input. Any of
the standard algebraic methods for solving a system of linear equations may be used to find the
transfer function between one of the primary variables and the input.

Example

Find the transfer function relating the capacitor voltage vc to the input voltage Vin in
the electrical circuit shown in Fig. 12.

C
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-

V  (t)in Z

Z

Z

V  (t) 3

2

1

in

V    = 0ref

Z

Z

Z

V  (t) 3

2

1

in

V    = 0ref

(a) (b) (c)

Figure 12: Second-order electrical circuit, its linear graph, and tree.

Solution: The three impedances shown in the linear graph in Fig. 12b are

Z1 = R, Z2 = sL, and Z3 = 1/sC.

The choice of the three primary variables is somewhat arbitrary. In this case select the
voltage v3 (because it is the output variable), and the currents i1, i2. From the tree
given in Fig. 12c the two compatibility equations are

v1 + v3 − Vin = 0 (51)
v2 + v3 − Vin = 0 (52)

and the single continuity equation is

i1 + i2 − i3 = 0. (53)

Eqs. (i), (ii), and (iii) may be written in terms of the primary variables using the
impedance relationships:

Z1i1 + v3 = Vin (54)
Z2i2 + v3 = Vin (55)

i1 + i2 − Y3v3 = 0 (56)
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where the s dependence has been omitted for convenience. The three equations may be
written in matrix form 

 Z1 0 1
0 Z2 1
1 1 −Y3





 i1

i2
v3


 =


 Vin

Vin

0


 , (57)

and Cramer’s Rule (Appendix A) may be used to solve for v3(s):

v3 =

det


 Z1 0 Vin

0 Z2 Vin

1 1 0




det


 Z1 0 1

0 Z2 1
1 1 −Y3




(58)

=
(Z1 + Z2)

Z1Z2Y3 + Z1 + Z2
Vin. (59)

The required transfer function is:

H (s) =
vc(s)
Vin(s)

=
v3(s)
Vin(s)

(60)

=
Z1 + Z2

Z1Z2Y3 + Z1 + Z2
(61)

=
R+ sL

RLCs2 +R+ sL
(62)

=
(

1
RLC

)
R+ sL

s2 + (1/RC)s+ 1/LC
(63)

and the system differential equation is

d2vc

dt2
+

1
RC

dvc

dt
+

1
LC

vc =
1

RC

dVin

dt
+

1
LC

Vin. (64)

A system containing N passive elements requires the solution of N linear equations if each element
is represented as a discrete branch in the graph. There is, however, no restriction on the form
of the impedances that may be represented in the branches of a linear graph used to generate
the compatability and continuity equations. The rules for combining series and parallel elements,
described in Section 3, may be used to reduce the number of branches in a linear graph, and
therefore the number of equations to be solved. Care should be taken, however, not to mask the
output variable through any graph reduction. If the output variable is a through-variable the
branch specifying that variable should not be eliminated; if the output is an across-variable the
nodes related to that variable should be retained.

Example

The hydraulic system shown in Fig. 13 has a pump, characterized as a Thevenin source
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Figure 13: A fluid system and its linear graph.

with a pressure source Pin and a series resistance Rs, connected to a long pipe with
lumped inertance Ip and resistance Rp and a vertical walled tank Cf . A discharge valve
is partially opened and is modeled as a linear resistance Ro. Find the transfer function
relating the pressure at the bottom of the tank pc to the source pressure Pin.

Solution: The system as shown has five passive elements and would require the solution
of a set of five linear equations to generate the transfer function directly. If however,
the three series elements Rs, Rp, and Ip are combined into a single impedance

Z1 = Rs +Rp + sIp

and the two parallel elements, Cf and Ro, are combined into an equivalent impedance

Z2 =
Ro

RoCs+ 1

the system may be represented by a reduced linear graph containing just two passive
elements, as shown in Fig. 14.

P  (t)in

Z  = R  + R  + sI1 s p p

Z  = 
R

R Cs + 1o

o
2

Patm

P  (t)in

Patm

Z

Z 1

2

(a) (b)

Figure 14: A reduced linear graph for the fluid system and its tree

The reduced system may be represented by just two linear equations. If the primary
variables are selected as q1 and p2, the compatibility and continuity equations are:

q1Z1 + p2 = Pin (65)
q1 − p2Y2 = 0 (66)
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which may be written in matrix form:[
Z1 1
1 −Y2

] [
q1

p2

]
=

[
Pin

0

]
(67)

The required output variable pc = p2, and Cramer’s Rule gives the solution

p2(s) =
det

[
Z1 Pin

1 0

]

det

[
Z1 1
1 −Y2

] (68)

=
Pin(s)

Z1Y2 + 1
(69)

When the values of the impedance Z1 and the admittance Y2 are substituted

H(s) =
pc(s)
Pin(s)

(70)

=
1

(Rs +Rp + sIp) (RoCfs+ 1) /Ro + 1
(71)

=
Ro

IpCfRos2 + (Ip + (Rs +Rp)RoCf ) s+ (Rs +Rp +Ro)
(72)

The two-port transducing elements may be incorporated into the procedure by using their
constitutive relationships. For the transformer there is a direct algebraic relationship between the
across-variables associated with the two branches, that is[

v1

f1

]
=

[
TF 0
0 −1/TF

] [
v2

f2

]
(73)

where TF is the transformer ratio. Thus while there are four variables associated with the two
branches of the transformer, only two of them are independent. One across-variable and one
through-variable should be chosen as the two primary variables, and the elemental relationships of
Eq. (73) used to eliminate the secondary variables from the compatibility and continuity equations.
The same rules as specified in the Linear Graph modeling method are applied in constructing the
tree, namely that one and only one of the branches of a transformer should be included in the tree.

Similarly the constitutive equations for a gyrator are:[
v1

f1

]
=

[
0 GY

−1/GY 0

] [
v2

f2

]
(74)

where GY is the gyrator ratio. In this case there is a direct algebraic relationship between the
across-variable on one branch and the through-variable in the other branch. The two primary
variables should therefore be selected as the two across-variables or the two through-variables. The
relationships in Eq. (74) may be used to eliminate the secondary variables. The tree should contain
either both branches of a gyrator or neither of the two branches.
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Example

Figure 15 shows a model of a moving coil d.c. voltmeter. The principle of operation
is similar to that of a permanent magnet d.c. motor. A coil is wound on a rotating
armature and is mounted in a magnetic field so that it generates a torque proportional
to the current. As the coil moves a back e.m.f. is generated that is proportional to the
angular velocity of the armature. The armature is modeled as series lumped inductance
and resistance elements in a manner similar to the motor. The mechanical side of the
meter is modeled as an inertia J , representing the armature, and a rotational spring K.
When a constant current is applied the steady-state deflection of the spring is directly
proportional to the current. A series resistor is used to limit the current through the
meter.

sL

W
J

L
+

-

R

vb

R

s

a

a

K

+

-

0

10

1/K m

V  (t)in
V    = 0ref W    = 0ref

R

R

aa

s

1/sJ

(a) (b)

s/K

Figure 15: A dc voltmeter and its linear graph.

Assume that the meter is connected to a voltage source Vin. Find the transfer function
relating the angular velocity of the armature ΩJ to the input voltage Vin.

Solution: The meter is modeled as a transformer between the electrical and rotational
domains because there is a direct relationship between the through and across variables
on the electrical and mechanical sides. The constitutive relationships are therefore[

Ωm

Tm

]
=

[
1/Km 0
0 −Km

] [
vm

im

]

where Km is the meter torque constant and the transformer ratio TF = 1/Km.

The three series electrical elements Rs, Ra, and La may be combined into a single
impedance element

Z1 = Rs +Ra + sLa, (75)

and the parallel mechanical elements J and K may also be reduced to an equivalent
impedance

Z4 =
s

Js2 +K
, (76)

generating the reduced linear graph and the tree shown in Fig. 16.

Choose as primary variables i1, i2, Ω3, and Ω4, and note that the output variable is
ΩJ = Ω4. The tree shown in Fig. 16 generates the following compatibility and continuity
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Figure 16: Reduced linear graph and tree for the moving coil meter.

equations:

v1 + v2 = Vin (77)
−Ω3 +Ω4 = 0 (78)

i1 − i2 = 0 (79)
−T3 − T4 = 0 (80)

with the following constraint equations to eliminate the four secondary variables

v1 = Z1i1 (81)
v2 = KmΩ3 (82)
T3 = −Kmi2 (83)
T4 = Y4Ω4. (84)

If these constraints are substituted into Eqs. (iii) – (vi), the equations become:



Z1 0 Km 0
1 −1 0 0
0 0 −1 1
0 Km 0 −Y4







i1
i2
Ω3

Ω4


 =




Vin

0
0
0


 . (85)

Cramer’s rule generates the solution

Ω4 =

det




Z1 0 Km Vin

1 −1 0 0
0 0 −1 0
0 Km 0 0




det




Z1 0 Km 0
1 −1 0 0
0 0 −1 1
0 Km 0 −Y4




(86)

=
−KmVin

−Z1Y4 −K2
m

(87)

=
sKmVin

(Rs +Ra + sLa) (Js2 +K) + sK2
m

(88)
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Figure 17: Thevenin equivalent of a system containing a single source and a load element ZL.

so that

H(s) =
ΩJ

Vin(s)
=

Ω4

Vin(s)
(89)

=
sKm

JLas3 + J (Rs +Ra) s2 + (KLa +K2
m) s+ (Rs +Ra)K

. (90)

5 Source Equivalent Models

The concept of Thevenin and Norton equivalent sources are introduced to account for the power
limitation of physical sources. The observed “droop” in the characteristic of a physical source
is modeled by creating an equivalent source containing an ideal source and a dissipative D-type
element. The concept of Thevenin and Norton source models may be extended and used as an
aid to modeling systems that have a defined load impedance, that is an impedance that defines the
output variable.

5.1 Thevenin Equivalent System Model

Thevenin’s theorem may be stated as follows:

Any linear system of arbitrary complexity excited by a single active source, and driving
an external load ZL may be modeled as a single across-variable source Vs, connected in
series with a single impedance element Zo(s).

Figure 17 shows the structure of the Thevenin model. Regardless of the internal complexity of the
system the theorem allows the overall system to be reduced to just three elements; the source Vs,
and two passive impedances Zo, and the load ZL.

The values of the equivalent source and the series impedance are found as follows:

1. The across-variable source Vs is the “no-load” across-variable at the output port, obtained
when the load impedance ZL is removed from the system. It may be found from the transfer
function relating the output across-variable to the input when ZL is disconnected from the
system.
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2. The series impedance Zo is the system output impedance, found by setting any source (either
through or across-variable) to zero and determining the driving-point impedance of the system
at the output port.

An across-variable source is set to zero by replacing it with a “short-circuit”, that is the nodes
to which the source is connected are joined together. Conversely a through-variable source is set
to zero by removing the branch from the linear graph leaving the nodes intact, but creating an
“open-circuit”.

The following example serves to demonstrate how Thevenin’s theorem may be used to derive a
system model.

Example

A rotational power transmission system consists of a velocity source Ωin coupled to a
shaft through a flexible coupling with torsional stiffness K. The shaft is supported in a
bearing with viscous frictional coefficient B and is connected to a machine tool, modeled
as an unknown linear impedance ZL(s). Find the Thevenin equivalent source model for
the shaft transmission system, and derive the transfer function for the complete model.

Bearing

K
B

W (t)

               Motor 
(across-variable  source)

Flexible
coupling

W   (t)

Load
Z L

in
W  (t)

W    = 0ref

in
L

Z L

W   (t)
L

s/K

1/B

(a) (b)

Figure 18: Rotational power transmission system; (a) the physical system, (b) the linear graph.

Solution: Figure 18 shows the power transmission system, its linear graph and the
Thevenin equivalent system. The Thevenin across-variable source element Ωs is found
by removing the load ZL from the output port and determining the “no-load” across
variable, using the modified linear graph shown in Fig. 19a. The compatability and
continuity conditions on this linear graph yield:

Ωs(s) =
ZB

ZB + ZK
Ωin(s). (91)

The output impedance Zo is found from Fig. 19b by setting the source Ωin to zero,
and computing the impedance seen at the output port with ZL removed. The output
impedance is the impedance of the elements ZK and ZB in parallel, that is:

Zo =
ZBZK

ZB + ZK
. (92)

The Thevenin equivalent system is shown in Fig. 19c.
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Figure 19: Reduced linear graphs for determination of (a) the Thevenin equivalent source Ωs, and
(b) the system output impedance Zo, and (c) the Thevenin source equivalent system.

When the load impedance ZL is connected, the output angular velocity ΩL computed
from the Thevenin model is:

ΩL(s) =
ZL

Zo + ZL
Ωs(s) (93)

=
(

ZB(s)
ZB(s) + ZK(s)

) (
ZL (ZB + ZK)

ZBZK + ZL (ZB + ZK)

)
Ωin(s) (94)

=
ZLZB

ZBZK + ZLZB + ZLZK
Ωin(s) (95)

which is the result we seek. Although the values ZB = 1/B and ZK = s/K may be
substituted, the impedance of the load ZL must be known in order to find the complete
transfer function.

5.2 Norton Equivalent System Model

Norton’s theorem, which is analogous to the Thevenin theorem, states:

Any linear system connected to a single external load ZL may be represented by an
equivalent through-variable source Fo, connected in parallel with an impedance Zo

across the output port.

Figure 20 shows the structure of a Norton source equivalent model. The difference between the
Norton and Thevenin source models lies only in the nature of the assumed source and the se-
ries/parallel connection of the impedance element. In all respects the systems are equivalent; no
measurement at the output can distinguish between them.

The values of the source and impedance elements are found as follows:

1. The value of the through-variable source Fs is the value of the through-variable at the output
port when the load impedance ZL is reduced to zero. This may be considered the “short-
circuit” output through-variable.
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Figure 20: Norton equivalent of a system containing a single source and a load element ZL.

2. The value of the parallel impedance element Zo is identical to that of the Thevenin equivalent
source; it is the system output impedance, found by setting all internal sources to zero and
measuring the system impedance at the output port. In Norton source equivalent systems
the output admittance Yo(s) = 1/Zo(s) is often used.

The Norton and Thevenin models are equivalent descriptions of the system dynamic behavior as
measured at the output port. However, neither model is a representation of the internal structure
of the system.

Example

Find the Norton equivalent source model of the rotational power transmission system
of Example 8, and show that it produces the same transfer function as the Thevenin
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in

Z L
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Norton torque
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Figure 21: Reduced linear graphs and Norton equivalent for system in Example 8.

model.

Solution: The Norton through variable source is found by setting ZL = 0, which
effectively “short circuits” ZB. Then the Norton source torque Ts, is equal to the
through-variable TL in the load branch

Ts =
Ωin

ZK
. (96)

It was shown in Example 8 that the system output impedance is

Zo =
ZBZK

ZB + ZK
(97)
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The Norton equivalent system is shown in Fig. 21. At the single node the continuity
equation is

Ts − To − TL = 0 (98)

or
Ωin

ZK
− ΩoZo − ΩLZL = 0. (99)

A compatibility condition shows that ΩL = Ωo, and substituting for Zo gives the result

ΩL(s) =
ZLZB

ZBZK + ZLZB + ZLZK
Ωin(s) (100)

which is the same as derived using the Thevenin method in Example 8.
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