MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING
 2.151 Advanced System Dynamics and Control

Modal Decomposition and the Time-Domain Response of Linear Systems ${ }^{1}$

In a previous handout we examined the response of the linear state determined system in terms of the state-transition matrix $\boldsymbol{\Phi}(t)$. In this handout we examine how the eigenvectors affect the response, and develop a geometrical interpretation that can give insight into system behavior.

We assume that we have a system

$$
\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u}
$$

with real, distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ determined from the the characteristic equation $\operatorname{det}[\lambda \mathbf{I}-\mathbf{A}]=$ 0 , and an associated set of eigenvectors $\mathbf{m}_{1}, \ldots, \mathbf{m}_{n}$. As before, we define the system modal matrix

$$
\mathbf{M}=\left[\mathbf{m}_{1}\left|\mathbf{m}_{2}\right| \ldots \mid \mathbf{m}_{n}\right]
$$

If the eigenvalues are distinct the eigenvectors are linearly independent, and form a basis for the vector state space. Consider the homogeneous response of the system to a set of initial conditions $\mathbf{x}(0)$:

$$
\begin{equation*}
\mathbf{x}_{h}(t)=\mathbf{\Phi}(t) \mathbf{x}(0)=e^{\mathbf{A} t} \mathbf{x}(0) \tag{1}
\end{equation*}
$$

where the state transition matrix $\boldsymbol{\Phi}(t)$ may be expressed in terms of the eigenvalues/eigenvectors as

$$
\begin{equation*}
\boldsymbol{\Phi}(t)=\mathbf{M} e^{\boldsymbol{\Lambda} t} \mathbf{M}^{-1} \tag{2}
\end{equation*}
$$

where $e^{\boldsymbol{\Lambda} t}$ is a square matrix $(n \times n)$ with terms $e^{\lambda_{i} t}$ on the leading diagonal. Define

$$
\mathbf{R}=\mathbf{M}^{-1}=\left[\begin{array}{c}
\mathbf{r}_{1} \\
\hline \mathbf{r}_{2} \\
\hline \vdots \\
\hline \mathbf{r}_{n}
\end{array}\right],
$$

where r_{i} is a row vector $(1 \times n)$. Then the homogeneous response may be written

$$
\begin{align*}
\mathbf{x}_{h}(t) & =\left(\mathbf{M} e^{\boldsymbol{\Lambda} t}\right)(\mathbf{R x}(0)) \\
& =\sum_{i=1}^{n} e^{\lambda_{i} t} \mathbf{m}_{i}\left(\mathbf{r}_{i} \mathbf{x}(0)\right) \\
& =\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t} \mathbf{m}_{i} \tag{3}
\end{align*}
$$

where the scalar coefficients $c_{i}=\mathbf{r}_{i} \mathbf{x}(0)$. Note that c_{i} are the inner (scalar or dot) product $c_{i}=\left\langle\mathbf{r}_{i}^{T} \mathbf{x}(0)\right\rangle$.

Equation (3) states that the homogeneous response may be represented as a weighted superposition of the system modes, $e^{\lambda_{i} t} \mathbf{m}_{i}$, where the initial conditions $\mathbf{x}(0)$ affect the strength of excitation of each mode. This is known as modal decomposition.

[^0]
Example 1

Find the response of the homogeneous system

$$
\dot{\mathrm{x}}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right] \mathrm{x}
$$

to the initial conditions $\mathbf{x}(0)=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$.
Solution: The system has eigenvalues $\lambda_{1,2}=-1,-2$ and a pair of associated eigenvectors $\mathbf{m}_{\mathbf{1}}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$ and $\mathbf{m}_{2}=\left[\begin{array}{ll}-1 & 2\end{array}\right]^{T}$. The modal matrix is

$$
\mathbf{M}=\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right]
$$

and

$$
\mathbf{R}=\mathbf{M}^{-1}=\left[\begin{array}{ll}
-2 & -1 \\
-1 & -1
\end{array}\right]
$$

so that $\mathbf{r}_{1}=\left[\begin{array}{ll}-2 & -1\end{array}\right]$ and $\mathbf{r}_{2}=\left[\begin{array}{ll}-1 & -1\end{array}\right]$.

$$
\begin{aligned}
\mathbf{x}_{h}(t) & =\sum_{i=1}^{n}\left(\mathbf{r}_{i} \mathbf{x}(0)\right) e^{\lambda_{i} t} \mathbf{m}_{i} \\
& =-7 e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+5 e^{-2 t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
7 e^{-t}-5 e^{-2 t} \\
-7 e^{-t}+10 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

Consider the product

$$
\mathbf{R M}=\mathbf{M}^{-1} \mathbf{M}=\mathbf{I}
$$

where \mathbf{I} is the identity matrix. Expansion of the product in terms of the rows and columns, and element by element comparison with the identity matrix shows

$$
\begin{align*}
\mathbf{r}_{i} \mathbf{m}_{i} & =1 \tag{4}\\
\text { and } \mathbf{r}_{i} \mathbf{m}_{j} & =0 \quad(i \neq j) . \tag{5}
\end{align*}
$$

If the initial conditions $\mathbf{x}(0)$ lie on an extension of an eigenvector, that is $\mathbf{x}(0)=q \mathbf{m}_{j}$, Eqs. (4) and (5) show that the coefficients $c_{i}=\mathbf{r}_{i} \mathbf{x}(0)=q \mathbf{r}_{i} \mathbf{m}_{j}=0$ for all $i \neq j$ and Eq, (3) reduces to

$$
\begin{equation*}
\mathbf{x}_{h}(t)=q e^{\lambda_{j} t} \mathbf{m}_{j} . \tag{6}
\end{equation*}
$$

When an initial conditions $\mathbf{x}(0)$ lie on an extension of an eigenvector \mathbf{m}_{j}, only the mode $e^{\lambda_{j} t} \mathbf{m}_{j}$ associated with that eigenvector appears in the system response. The trajectory of the response $\mathbf{x}_{h}(t)$ in the state-space \mathbf{x} is a straight line along the eigenvector \mathbf{m}_{j}. For a stable system this trajectory will approach the origin $\mathbf{x}=\mathbf{0}$ as $t \rightarrow \infty$.

Example 2

Find the response of the homogeneous system in the Example 1 to the initial conditions $\mathbf{x}(0)=\left[\begin{array}{ll}-3 & 6\end{array}\right]^{T}$.
Solution: From the previous example the system has eigenvalues $\lambda_{1,2}=-1,-2$ and eigenvectors $\mathbf{m}_{1}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$, and $\mathbf{m}_{2}=\left[\begin{array}{ll}-1 & 2\end{array}\right]^{T}$. The matrix \mathbf{R} has rows $\mathbf{r}_{1}=$ $\left[\begin{array}{ll}-2 & -1\end{array}\right]$ and $\mathbf{r}_{2}=\left[\begin{array}{ll}-1 & -1\end{array}\right]$.
With the given initial conditions, $\mathbf{r}_{1} \mathbf{x}(0)=0$, and $\mathbf{r}_{2} \mathbf{x}(0)=3$. From Eq. (3) the homogeneous response is

$$
\mathbf{x}_{h}(t)=3 e^{-2 t} \mathbf{m}_{2}=\left[\begin{array}{c}
3 e^{-2 t} \\
-6 e^{-2 t}
\end{array}\right]
$$

indicating that the modal component e^{-t} has not been excited by these particular initial conditions. In this case $\mathbf{x}(0)=-3 \mathbf{v}_{2}$, that is the initial condition lies along the eigenvector \mathbf{m}_{2}.

The n linearly independent eigenvectors form a basis in the state-space, therefore any point \mathbf{x} may be expressed as a linear combination of the eigenvectors

$$
\begin{align*}
\mathbf{x} & =q_{1} \mathbf{m}_{1}+q_{2} \mathbf{m}_{2}+\ldots+q_{n} \mathbf{m}_{n} \\
& =\sum_{i=1}^{n} q_{i} \mathbf{m}_{i} \tag{7}
\end{align*}
$$

The components q_{i} may be found by noting that Eq. (7) may be written $\mathbf{x}=\mathbf{M q}$ where $\mathbf{q}=$ $\left[\begin{array}{llll}q_{1} & q_{2} & \ldots & q_{n}\end{array}\right]^{T}$, so that

$$
\begin{equation*}
\mathbf{q}=\mathbf{M}^{-1} \mathbf{x} \quad \text { or } \quad q_{i}=\mathbf{r}_{i} \mathbf{x} \tag{8}
\end{equation*}
$$

From Eq. (6), the principle of superposition therefore allows the homogeneous response from initial conditions

$$
\mathbf{x}(0)=q_{1} \mathbf{m}_{1}+q_{2} \mathbf{m}_{2}+\ldots+q_{n} \mathbf{m}_{n}=\sum_{i=1}^{n}\left(\mathbf{r}_{i} \mathbf{x}(0)\right) \mathbf{m}_{i}
$$

to be written as the sum of the responses to each modal component, that is Similarly, the system time-domain response $\mathbf{x}(t)$ may be written as a superposition of trajectories along the eigenvectors

$$
\begin{equation*}
\mathbf{x}(t)=\sum_{i=1}^{n} q_{i} e^{\lambda_{i} t} \mathbf{m}_{i} \tag{9}
\end{equation*}
$$

The n modes of the system are excited by the components q_{i} of the initial conditions that lie along the corresponding eigenvector \mathbf{m}_{i}. Note that each component of the system response $q_{i} e^{\lambda_{i} t} \mathbf{m}_{i}$, when expressed as in Eq. (8), is a straight line path in the state-space, aligned with its eigenvector. Each component approaches the origin at a rate determined by the term $e^{\lambda_{i} t}$, generating a curved trajectory in state space.

- Example 3

Use decomposition of the initial condition vector along the eigenvectors to solve the problem posed in Example 1.
Solution: From Example 1, the system has eigenvalues $\lambda_{1,2}=-1,-2$ and modal matrix

$$
\mathbf{M}=\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right]
$$

With the initial conditions $\mathbf{x}(0)=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$. Then

$$
\mathbf{q}=\mathbf{M}^{-1} \mathbf{x}(0)=\left[\begin{array}{rr}
-2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-7 \\
5
\end{array}\right]
$$

so that $q_{1}=-7$ and $q_{2}=5$. From Eq. (9) the response is therefore

$$
\mathbf{x}_{h}(t)=-7 e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+5 e^{-2 t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
7 e^{-t}-5 e^{-2 t} \\
-7 e^{-t}+10 e^{-2 t}
\end{array}\right]
$$

Complex Eigenvalues:

We now consider the case of a second-order system with pair of complex conjugate eigenvalues

$$
\lambda_{1,2}=\alpha \pm j \beta .
$$

In this case the eigenvectors are also complex conjugates, and the modal matrix may be written

$$
\mathbf{M}=\left[\mathbf{m}_{1} \mid \mathbf{m}_{2}\right]=\left[\mathbf{m}^{\prime}+j \mathbf{m}^{\prime \prime} \mid \mathbf{m}^{\prime}-j \mathbf{m}^{\prime \prime}\right]
$$

where $\mathbf{m}^{\prime}=\Re\left\{\mathbf{m}_{1}\right\}$ and $\mathbf{m}^{\prime \prime}=\Im\left\{\mathbf{m}_{1}\right\}$. Similarly

$$
\mathbf{R}=\mathbf{M}^{-1}=\left[\frac{\mathbf{r}_{1}}{\mathbf{r}_{2}}\right]=\left[\frac{\mathbf{r}^{\prime}+j \mathbf{r}^{\prime \prime}}{\mathbf{r}^{\prime}-j \mathbf{r}^{\prime \prime}}\right],
$$

where $\mathbf{r}^{\prime}=\Re\left\{\mathbf{r}_{1}\right\}$ and $\mathbf{r}^{\prime \prime}=\Im\left\{\mathbf{r}_{1}\right\}$. As before $\mathbf{R M}=\mathbf{I}$, and the products involving the real and imaginary parts of \mathbf{r} and \mathbf{m} are

$$
\begin{align*}
\mathbf{r}^{\prime} \mathbf{m}^{\prime} & =0.5 \\
\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime \prime} & =-0.5 \\
\mathbf{r}^{\prime} \mathbf{m}^{\prime \prime} & =0 \tag{10}\\
\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime} & =0
\end{align*}
$$

From Eq. (3)

$$
\begin{align*}
\mathbf{x}_{h}(t) & =e^{(\alpha+j \beta) t}\left(\mathbf{m}^{\prime}+j \mathbf{m}^{\prime \prime}\right)\left(\left(\mathbf{r}^{\prime}+j \mathbf{r}^{\prime \prime}\right) \mathbf{x}(0)\right)+e^{(\alpha-j \beta) t}\left(\mathbf{m}^{\prime}-j \mathbf{m}^{\prime \prime}\right)\left(\left(\mathbf{r}^{\prime}-j \mathbf{r}^{\prime \prime}\right) \mathbf{x}(0)\right) \\
& =e^{\alpha t}\left(2 \cos (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime \prime}\right)-2 \sin (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime \prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime}\right)\right)(\tag{11}
\end{align*}
$$

which indicates that provided $\alpha<0$, the homogeneous response of the state-variables $\mathbf{x}_{h i}(t)$ are decaying sinusoids with angular frequency $\beta \mathrm{rad} / \mathrm{s}$ and with amplitudes and phases determined by the initial conditions $\mathbf{x}(0)$.

- Example 4

Find the response of the homogeneous system

$$
\dot{\mathrm{x}}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -2
\end{array}\right] \mathrm{x}
$$

to the initial conditions $\mathbf{x}(0)=\left[\begin{array}{ll}3 & 2\end{array}\right]^{T}$.
Solution: The system has complex eigenvalues $\lambda_{1,2}=-1+j 1,-1-j 1$ and a pair of associated eigenvectors $\mathbf{m}_{1}=\left[\begin{array}{ll}-1-j 1 & 2\end{array}\right]^{T}$ and $\mathbf{m}_{2}=\left[\begin{array}{ll}-1+j 1 & 2\end{array}\right]^{T}$. The modal matrix is

$$
\mathbf{M}=\left[\begin{array}{cc}
-1+j 1 & -1+j 1 \\
2 & 2
\end{array}\right]
$$

so that

$$
\mathbf{m}^{\prime}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad \text { and } \quad \mathbf{m}^{\prime \prime}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

Also

$$
\mathbf{R}=\mathbf{M}^{-1}=\left[\begin{array}{rr}
0.5 j & 0.25+0.25 j \\
-0.5 j & 0.25-0.25 j
\end{array}\right]
$$

so that

$$
\mathbf{r}^{\prime}=\left[\begin{array}{ll}
0 & 0.25
\end{array}\right] \quad \text { and } \quad \mathbf{r}^{\prime \prime}=\left[\begin{array}{ll}
0.5 & 0.25
\end{array}\right] .
$$

Also

$$
\mathbf{r}^{\prime} \mathbf{x}(0)=\left[\begin{array}{ll}
0 & 0.25
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=0.5 \quad \text { and } \quad \mathbf{r}^{\prime \prime} \mathbf{x}(0)=\left[\begin{array}{ll}
0.5 & 0.25
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=2 .
$$

From Eq. (11) the response is

$$
\begin{aligned}
\mathbf{x}_{h}(t) & =e^{\alpha t}\left(2 \cos (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime \prime}\right)-2 \sin (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime \prime}+\left(\mathbf{r}^{\prime \prime} \mathbf{x}(0)\right) \mathbf{m}^{\prime}\right)\right) \\
& =e^{-t}\left[2 \cos (t)\left(0.5\left[\begin{array}{r}
-1 \\
2
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
0
\end{array}\right]\right)-2 \sin (t)\left(0.5\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+2\left[\begin{array}{r}
-1 \\
2
\end{array}\right]\right)\right] \\
& =\left[\begin{array}{l}
e^{-t}(3 \cos (t)+5 \sin (t)) \\
e^{-t}(2 \cos (t)-8 \sin (t))
\end{array}\right] \\
& =\left[\begin{array}{l}
\sqrt{34} e^{-t} \cos (t+1.0304) \\
\sqrt{68} e^{-t} \cos (t-1.3258)
\end{array}\right]
\end{aligned}
$$

There are two modes associated with the pair of complex conjugate eigenvalues. If the initial conditions are chosen so that $\mathbf{x}(0)=\Re\left\{\mathbf{m}_{1}\right\}=\mathbf{m}^{\prime}$ then

$$
\begin{align*}
\mathbf{x}_{h}(t) & \left.=e^{\alpha t}\left(2 \cos (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{m}^{\prime}\right) \mathbf{m}^{\prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime}\right) \mathbf{m}^{\prime \prime}\right)-2 \sin (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{m}^{\prime}\right)\right) \mathbf{m}^{\prime \prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime}\right) \mathbf{m}^{\prime}\right)\right) \\
& (\operatorname{Mode} 1) \tag{12}
\end{align*}
$$

from Eqs. (10), and similarly if $\mathbf{x}(0)=\Im\left\{\mathbf{m}_{1}\right\}=\mathbf{m}^{\prime \prime}$ then

$$
\begin{align*}
\mathbf{x}_{h}(t) & \left.=e^{\alpha t}\left(2 \cos (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{m}^{\prime \prime}\right) \mathbf{m}^{\prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime \prime}\right) \mathbf{m}^{\prime \prime}\right)-2 \sin (\beta t)\left(\left(\mathbf{r}^{\prime} \mathbf{m}^{\prime \prime}\right)\right) \mathbf{m}^{\prime \prime}-\left(\mathbf{r}^{\prime \prime} \mathbf{m}^{\prime \prime}\right) \mathbf{m}^{\prime}\right)\right) \\
& \left.\left.=e^{\alpha t}(\sin (\beta t)) \mathbf{m}^{\prime}+\cos (\beta t) \mathbf{m}^{\prime \prime}\right) \quad \text { Mode } 2\right) . \tag{13}
\end{align*}
$$

These two modes are similar in form but differ in the amplitude and phase of the damped oscillations.

The Forced Response

For the forced single-input (SI) system

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}
$$

the term $\mathbf{B u}$ may be decomposed among the n eigenvectors \mathbf{m}_{i} as

$$
\mathbf{B u}=\mathbf{f}(t)=\sum_{i=1}^{n} f_{i}(t) \mathbf{m}_{i}
$$

where $f_{i}(t)=\mathbf{r}_{i} \mathbf{f}(t)$. The total response, consisting of the homogeneous component and the convolution integral, may then be written

$$
\begin{equation*}
\mathbf{x}(t)=\sum_{i=1}^{n}\left(\mathbf{r}_{i} \mathbf{x}(0)\right) e^{\lambda_{i} t} \mathbf{m}_{i}+\int_{0}^{t} \sum_{i=1}^{n}\left(\mathbf{r}_{i} \mathbf{B} u(\tau)\right) e^{\lambda_{i}(t-\tau)} \mathbf{m}_{i} d \tau \tag{14}
\end{equation*}
$$

which indicates that the effect of the system input on each of the system modes may be considered independently. The amplitude of the excitation of the i th mode is given by

$$
\int_{0}^{t}\left(\mathbf{r}_{i} \mathbf{B} u(\tau)\right) e^{\lambda_{i}(t-\tau)} \mathbf{m}_{i} d \tau
$$

If the input is chosen so that $\mathbf{B} u(t)$ always lies in the direction of one of the eigenvectors, then only one of the modes is excited by that input.

[^0]: ${ }^{1}$ D. Rowell 10/16/04

