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1 Introduction

In this note we examine the responses of linear, time-invariant (LTI) models expressed in the
standard state equation form:

ẋ = Ax+Bu (1)
y = Cx+Du. (2)

The solution proceeds in two steps; first the state variable response x(t) is determined by solving
the set of first-order state equations, Eq. (1), and then the state response is substituted into the
algebraic output equations, Eq. (2) in order to compute y(t).

Tthe total system state response x(t) is considered in two parts: the homogeneous solution
xh(t) that describes the response to an arbitrary set of initial conditions x(0), and a particular
solution xp(t) that satisfies the state equations for the given input u(t). The two components are
then combined to form the total response.

The solution methods encountered in this chapter rely heavily on matrix algebra. In order to
keep the treatment simple we attempt wherever possible to introduce concepts using a first-order
system, in which the A, B, C, and D matrices reduce to scalar values, and then to generalize
results by replacing the scalars with the appropriate matrices.

2 State-Variable Response of Linear Systems

2.1 The Homogeneous State Response

The state-variable response of a system described by Eq. (1) with zero input and an arbitrary set of
initial conditions x(0) is the solution of the set of n homogeneous first-order differential equations:

ẋ = Ax. (3)

To derive the homogeneous response xh(t), we begin by considering the response of a first-order
(scalar) system with state equation

ẋ = ax + bu (4)

with initial condition x(0). The homogeneous response xh(t) has an exponential form defined by
the system time constant τ = −1/a, or:

xh(t) = eatx(0). (5)

The exponential term eat in Eq. (5) may be expanded as a power series, to give:

xh(t) =

(
1 + at +

a2t2

2!
+

a3t3

3!
+ . . . +

aktk

k!
+ . . .

)
x(0), (6)
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where the series converges for all finite t.
Let us now assume that the homogeneous response xh(t) of the state vector of a higher order

linear time-invariant system, described by Eq. (3), can also be expressed as an infinite power series,
similar in form to Eq. (6), but in terms of the square matrix A, that is we assume:

xh(t) =

(
I+At +

A2t2

2!
+

A3t3

3!
+ . . . +

Aktk

k!
+ . . .

)
x(0) (7)

where x(0) is the initial state. Each term in this series is a matrix of size n×n, and the summation
of all terms yields another matrix of size n × n. To verify that the homogeneous state equation
ẋ = Ax is satisfied by Eq. (7), the series may be differentiated term by term. Matrix differentiation
is defined on an element by element basis, and because each system matrix Ak contains only
constant elements:

ẋh(t) =

(
0+A+A2t +

A3t2

2!
+ . . . +

Aktk−1

(k − 1)!
+ . . .

)
x(0)

= A

(
I+At +

A2t2

2!
+

A3t3

3!
+ . . . +

Ak−1tk−1

(k − 1)!
+ . . .

)
x(0)

= Axh(t). (8)

Equation (8) shows that the assumed series form of the solution satisfies the homogeneous state
equations, demonstrating that Eq. (7) is in fact a solution of Eq. (3). The homogeneous response
to an arbitrary set of initial conditions x(0) can therefore be expressed as an infinite sum of time
dependent matrix functions, involving only the system matrix A. Because of the similarity of
this series to the power series defining the scalar exponential, it is convenient to define the matrix
exponential of a square matrix A as

eAt = I+At +
A2t2

2!
+

A3t3

3!
+ . . . +

Aktk

k!
+ . . . (9)

which is itself a square matrix the same size as its defining matrix A. The matrix form of the
exponential is recognized by the presence of a matrix quantity in the exponent. The system
homogeneous response xh(t) may therefore be written in terms of the matrix exponential

xh(t) = eAtx(0) (10)

which is similar in form to Eq. (5). The solution is often written as

xh(t) = Φ(t)x(0) (11)

where Φ(t) = eAt is defined to be the state transition matrix [1 – 5] . Equation (11) gives the
response at any time t to an arbitrary set of initial conditions, thus computation of eAt at any t
yields the values of all the state variables x(t) directly.

Example

Determine the matrix exponential, and hence the state transition matrix, and the ho-
mogeneous response to the initial conditions x1(0) = 2, x2(0) = 3 of the system with
state equations:

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.
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Solution: The system matrix is

A =

[
−2 0
1 −1

]
.

From Eq. (9) the matrix exponential (and the state transition matrix) is

Φ(t) = eAt

=

(
I+At +

A2t2

2!
+

A3t3

3!
+ . . . +

Aktk

k!
+ . . .

)

=

[
1 0
0 1

]
+

[
−2 0
1 −1

]
t +

[
4 0

−3 1

]
t2

2!

+

[
−8 0
7 −1

]
t3

3!
+ . . .

=




1− 2t +
4t2

2!
− 8t3

3!
+ . . . 0

0 + t − 3t2

2!
+

7t3

3!
+ . . . 1− t +

t2

2!
− t3

3!
+ . . .


 . (12)

The elements φ11 and φ22 are simply the series representation for e−2t and e−t respec-
tively. The series for φ21 is not so easily recognized but is in fact the first four terms of
the the expansion of e−t − e−2t. The state transition matrix is therefore

Φ(t) =

[
e−2t 0

e−t − e−2t e−t

]
(13)

and the homogeneous response to initial conditions x1(0) and x2(0) is

xh(t) = Φ(t)x(0) (14)

or

x1(t) = x1(0)e−2t (15)

x2(t) = x1(0)
(
e−t − e−2t

)
+ x2(0)e−t. (16)

With the given initial conditions the response is

x1(t) = 2e−2t (17)

x2(t) = 2
(
e−t − e−2t

)
+ 3e−t

= 5e−t − 2e−2t. (18)

In general the recognition of the exponential components from the series for each element
is difficult and is not normally used for finding a closed form for the state transition
matrix.

Although the sum expressed in Eq. (9) converges for all A, in many cases the series converges slowly,
and is rarely used for the direct computation of Φ(t). There are many methods for computing the
elements of Φ(t), including one presented below, that are much more convenient than the direct
series definition. [1,5,6]
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2.2 The Forced State Response of Linear Systems

We now consider the complete response of a linear system to an input u(t). Consider first a
first-order system with a state equation ẋ = ax + bu written in the form

ẋ(t)− ax(t) = bu(t). (19)

If both sides are multiplied by an integrating factor e−at, the left-hand side becomes a perfect
differential

e−atẋ − e−atax =
d

dt

(
e−atx(t)

)
= e−atbu (20)

which may be integrated directly to give
∫ t

0

d

dτ

(
e−aτx (τ)

)
dτ = e−atx (t)− x (0) =

∫ t

0
e−aτ bu (τ) dτ (21)

and rearranged to give the state variable response explicitly:

x (t) = eatx (0) +
∫ t

0
ea(t−τ)bu (τ) dτ. (22)

The development of the expression for the response of higher order systems may be performed in
a similar manner using the matrix exponential e−At as an integrating factor. Matrix differentiation
and integration are defined to be element by element operations, so that if the state equations
ẋ = Ax+Bu are rearranged, and all terms pre-multiplied by the square matrix e−At:

e−Atẋ (t)− e−AtAx (t) =
d

dt

(
e−Atx (t)

)
= e−AtBu(t). (23)

Integration of Eq. (23) gives
∫ t

0

d

dτ

(
e−Aτx (τ)

)
dτ = e−Atx(t)− e−A0x(0) =

∫ t

0
e−AτBu(τ)dτ (24)

and because e−A0 = I and [e−At]−1 = eAt the complete state vector response may be written in
two similar forms

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (25)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ. (26)

The full state response, described by Eq. (25) or Eq. (26) consists of two components: the first
is a term similar to the system homogeneous response xh(t) = eAtx(0) that is dependent only on
the system initial conditions x(0). The second term is a convolution integral that is the particular
solution for the input u(t) with zero initial conditions.

Evaluation of the integral in Eq. (26) involves matrix integration. For a system of order n and
with r inputs, the matrix eAt is n× n, B is n× r and u(t) is an r × 1 column vector. The product
eA(t−τ)Bu(τ) is therefore an n × 1 column vector, and solution for each of the state equations
involves a single scalar integration.
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Example

Find the response of the two state variables of the system

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.

to a constant input u(t) = 5 for t > 0, if x1(0) = 0, and x2 = 0.

Solution: This is the same system described in Example 1. The state transition
matrix was shown to be

Φ(t) =

[
e−2t 0

e−t − e−2t e−t

]

With zero initial conditions, the forced response is (Eq. (25)):

x(t) = eAt
∫ t

0
e−AτBu(τ)dτ. (27)

Matrix integration is defined on an element by element basis, so that[
x1(t)
x2(t)

]
=

[
e−2t 0

e−t − e−2t e−t

] ∫ t

0

[
e2τ 0

eτ − e2τ eτ

] [
5
0

]
dτ (28)

=

[
e−2t 0

e−t − e−2t e−t

] [ ∫ t
0 5e2τdτ∫ t

0 5eτ − 5e2τdτ

]
(29)

=

[
5
2 − 5

2e−2t

5
2 − 5e−t + 5

2e−2t

]
(30)

3 The System Output Response

For either the homogeneous or forced responses, the system output response y(t) may be found by
substitution of the state variable response into the algebraic system output equations

y = Cx+Du. (31)

In the case of the homogeneous response, where u(t) = 0, Eq. (31) becomes

yh(t) = CeAtx(0), (32)

while for the forced response substitution of Eq. (26) into the output equations gives

y(t) = CeAtx(0) +C
∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t). (33)
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Example

Find the response of the output variable

y = 2x1 + x2

in the system described by state equations

ẋ1 = −2x1 + u

ẋ2 = x1 − x2.

to a constant input u(t) = 5 for t > 0, if x1(0) = 0, and x2 = 0.

Solution: This is the same system described in Example 1 with the same input and
initial conditions as used in Example 2. The state variable response is (Example 2):

[
x1(t)
x2(t)

]
=

[
5
2 − 5

2e−2t

5
2 − 5e−t + 5

2e−2t

]
(34)

The output response is

y(t) = 2x1(t) + x2(t)

=
15
2

− 5
2

e−2t − 5e−t. (35)

4 The State Transition Matrix

4.1 Properties of the State Transition Matrix

Table 1 shows some of the properties that can be derived directly from the series definition of the
matrix exponential eAt. For comparison the similar properties of the scalar exponential eat are
also given. Although the sum expressed in Eq. (9) converges for all A, in many cases the series
converges slowly, and is rarely used for the direct computation of Φ(t). There are many methods
for computing the elements of Φ(t), including one presented in the next section, that are much more
convenient than the series definition. The matrix exponential representation of the state transition
matrix allows some of its properties to be simply stated:

(1) Φ(0) = I, which simply states that the state response at time t = 0 is identical to
the initial conditions.

(2) Φ(−t) = Φ−1(t). The response of an unforced system before time t = 0 may be
calculated from the initial conditions x(0),

x(−t) = Φ(−t)x(0) = Φ−1(t)x(0) (36)

and the inverse always exists.
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Scalar exponential: Matrix exponential:

eat = 1 + at +
a2t2

2!
+

a3t3

3!
+ . . . eAt = I+At +

A2t2

2!
+

A3t3

3!
+ . . .

ea0 = 1 eA0 = I

e−at =
1

eat
e−At =

[
eAt

]−1

ea(t1+t2) = eat1eat2 eA(t1+t2) = eAt1eAt2

e(a1+a2)t = ea1tea2t e(A1+A2)t = eA1teA2t only if A1A2 = A2A1

d

dt
eat = aeat = eata

d

dt
eAt = AeAt = eAtA∫ t

0
eatdt =

1
a

[
eat − 1

] ∫ t

0
eAtdt = A−1

[
eAt − I

]
=

[
eAt − I

]
A−1

if A−1 exists. Otherwise defined by the series.

Table 1: Comparison of properties of the scalar and matrix exponentials.

(3) Φ(t1)Φ(t2) = Φ(t1 + t2). With this property the state response at time t may be
defined from the system state specified at some time other than t = 0, for example
at t = t0. Using Property (2), the response at time t = 0 is

x(0) = Φ(−t0)x(t0) (37)

and using the properties in Table 1,

x(t) = Φ(t)x(0) = Φ(t)Φ(−t0)x(t0) (38)

or
xh(t) = Φ(t − t0)x(t0). (39)

(4) If A is a diagonal matrix then eAt is also diagonal, and each element on the diagonal
is an exponential in the corresponding diagonal element of the A matrix, that is
eaiit. This property is easily shown by considering the terms An in the series
definition and noting that any diagonal matrix raised to an integer power is itself
diagonal.

4.2 Determining the State Transition Matrix from the Laplace Transform

The state transition matrix may be found from the Laplace transform of the homogeneous state
equations

ẋh = Axh

with initial conditions x(0) = x0. Using the derivative property of the Laplace transform

sXh(s)− x(0) = AXh(s) (40)

or
[sI−A]Xh(s) = x(0). (41)
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Then
Xh(s) = [sI−A]−1 x(0) =

adj [sI−A]
det [sI−A]

x(0). (42)

Taking the inverse Laplace transform

xh(t) = L−1
{
adj [sI−A]
det [sI−A]

}
x(0), (43)

where L−1 {} indicates the inverse Laplace transform, from which it can be seen that

Φ(t) = L−1
{
adj [sI−A]
det [sI−A]

}
. (44)

Example

Find the state transition matrix for a system having an A matrix:

A =

[
−2 1
2 −3

]

Solution: For this system

[sI−A] =

[
s + 2 −1
−2 s + 3

]
.

Then

det [sI−A] = s2 + 5s + 4, and adj [sI−A] =

[
s + 3 1
2 s + 2

]

so that

Φ(t) = L−1







s + 3
s2 + 5s + 4

1
s2 + 5s + 4

2
s2 + 5s + 4

s + 2
s2 + 5s + 4







=




2
3

e−t +
1
3

e−4t 1
3

e−t − 1
3

e−4t

2
3

e−t − 2
3

e−4t 1
3

e−t +
2
3

e−4t




Another method for computing Φ(t) is described in Section 4.4.

4.3 System Eigenvalues and Eigenvectors

In Example 2.1 each element of Φ(t) = eAt is a sum of scalar exponential terms, and the homoge-
neous response of each of the two state variables is a sum of exponential terms. The homogeneous
response of first and second-order systems is exponential in form, containing components of the
form eλt, where λ is a root of the characteristic equation. The first-order homogeneous output
response is of the form y(t) = Ceλt where C is determined from the initial condition C = y(0), and
the second order response consists of two exponential components y(t) = C1e

λ1t + C2e
λ2t where

the constants C1 and C2 are determined by a pair of initial conditions, usually the output and its
derivative.
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It is therefore reasonable to conjecture that for an nth order system the homogeneous response
of each of the n state variables xi(t) consists of a weighted sum of n exponential components:

xi(t) =
n∑

j=1

mije
λjt (45)

where the mij are constant coefficients that are dependent on the system structure and the initial
conditions x(0). The proposed solution for the complete state vector may be written in a matrix
form 


x1(t)
x2(t)
...
xn(t)


 =




m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn







eλ1t

eλ2t

...
eλnt


 (46)

or

xh(t) = M




eλ1t

eλ2t

...
eλnt


 (47)

where M is an n × n matrix of the coefficients mij .
To determine the conditions under which Eq. (47) is a solution of the homogeneous state equa-

tions, the suggested response is differentiated and substituted into the state equation. From Eq.
(45) the derivative of each conjectured state response is

dxi

dt
=

n∑
j=1

λjmije
λjt (48)

or in the matrix form 


ẋ1

ẋ2
...
ẋn


 =




λ1m11 λ2m12 . . . λnm1n

λ1m21 λ2m22 . . . λ2m2n
...

...
. . .

...
λ1mn1 λ2mn2 . . . λnmnn







eλ1t

eλ2t

...
eλnt


 . (49)

Equations (46) and (49) may be substituted into the homogeneous state equation, Eq. (3),


λ1m11 λ2m12 . . . λnm1n

λ1m21 λ2m22 . . . λ2m2n
...

...
. . .

...
λ1mn1 λ2mn2 . . . λnmnn







eλ1t

eλ2t

...
eλnt


 = A




m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn







eλ1t

eλ2t

...
eλnt


 (50)

and if a set of mij and λi can be found that satisfy Eq. (50) the conjectured exponential form is a
solution to the homogeneous state equations.

It is convenient to write the n × n matrix M in terms of its columns, that is to define a set of
n column vectors mj for j = 1, 2, . . . , n from the matrix M

mj =




m1j

m2j
...
mnj



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so that the matrix M may be written in a partitioned form

M =
[
m1 m2 . . . mn

]
. (51)

Equation (50) may then be written

[
λ1m1 λ2m2 . . . λnmn

]



eλ1t

eλ2t

...
eλnt


 = A

[
m1 m2 . . . mn

]



eλ1t

eλ2t

...
eλnt


 (52)

and for Eq.(52) to hold the required condition is[
λ1m1 λ2m2 . . . λnmn

]
= A

[
m1 m2 . . . mn

]
=

[
Am1 Am2 . . . Amn

]
. (53)

The two matrices in Eq. (53) are square n × n. If they are equal then the corresponding columns
in each must be equal, that is

λimi = Ami i = 1, 2, . . . , n. (54)

Equation (54) states that the assumed exponential form for the solution satisfies the homogeneous
state equation provided a set of n scalar quantities λi, and a set of n column vectors mi can be
found that each satisfy Eq. (54).

Equation (54) is a statement of the classical eigenvalue/eigenvector problem of linear algebra.
Given a square matrix A, the values of λ satisfying Eq. (54) are known as the eigenvalues, or
characteristic values, of A. The corresponding column vectors m are defined to be the eigenvectors,
or characteristic vectors, of A. The homogeneous response of a linear system is therefore determined
by the eigenvalues and the eigenvectors of its system matrix A.

Equation (54) may be written as a set of homogeneous algebraic equations

[λiI−A]mi = 0 (55)

where I is the n×n identity matrix. The condition for a non-trivial solution of such a set of linear
equations is that

∆(λi) = det [λiI−A] = 0. (56)

which is defined to be the characteristic equation of the n × n matrix A. Expansion of the deter-
minant generates a polynomial of degree n in λ, and so Eq. (56) may be written

λn + an−1λ
n−1 + an−2λ

n−2 + . . . + a1λ + a0 = 0 (57)

or in factored form in terms of its n roots λ1, . . . , λn

(λ − λ1) (λ − λ2) . . . (λ − λn) = 0. (58)

For a physical system the n roots are either real or occur in complex conjugate pairs. The eigen-
values of the matrix A are the roots of its characteristic equation, and these are commonly known
as the system eigenvalues.
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Example

Determine the eigenvalues of a linear system with state equations:
 ẋ1

ẋ2

ẋ3


 =


 0 1 0

0 0 1
−10 −9 −4





 x1

x2

x3


 +


 0

0
1


u(t).

Solution: The characteristic equation is det [λI−A] = 0 or

det


 λ −1 0

0 λ −1
10 9 λ + 4


 = 0 (59)

λ3 + 4λ2 + 9λ + 10 = 0 (60)
(λ + 2) (λ + (1 + j2)) (λ + (1− j2)) = 0 (61)

The three eigenvalues are therefore λ1 = −2, λ2 = −1 + j2, and λ2 = −1− j2.

For each eigenvalue of a system there is an eigenvector, defined from Eq. (55). If the eigenvalues
are distinct, the eigenvectors are linearly independent, and the matrix M is non-singular. In the
development that follows it is assumed that M has an inverse, and therefore only applies to systems
without repeated eigenvalues.

An eigenvector mi associated with a given eigenvalue λi is found by substituting into the
equation

[λiI−A]mi = 0. (62)

No unique solution exists, however, because the definition of the eigenvalue problem, Eq. (54),
shows that if m is an eigenvector then so is αm for any non-zero scalar value α. The matrix M,
which is simply a collection of eigenvectors, defined in Eq. (51) therefore is not unique and some
other information must be used to fully specify the homogeneous system response.

Example

Determine the eigenvalues and corresponding eigenvectors associated with a system
having an A matrix:

A =

[
−2 1
2 −3

]
.

Solution: The characteristic equation is det [λI−A] = 0 or

det

[
λ + 2 −1
−2 λ + 3

]
= 0

λ2 + 5λ + 4 = 0
(λ + 4) (λ + 1) = 0. (63)
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The two eigenvalues are therefore λ1 = −1, and λ2 = −4. To find the eigenvectors these
values are substituted into the equation [λiI−A]mi = 0. For the case λ1 = −1 this
gives [

1 −1
−2 2

] [
m11

m21

]
=

[
0
0

]
. (64)

Both of these equations give the same result; m11 = m21. The eigenvector cannot be
further defined, and although one particular solution is

m1 =

[
1
1

]

the general solution must be defined in terms of an unknown scalar multiplier α1

m1 =

[
α1

α1

]
(65)

provided α1 �= 0.

Similarly, for the second eigenvalue, λ2 = −4, the equations are[
−2 −1
−2 −1

] [
m12

m22

]
=

[
0
0

]
(66)

which both state that −2m12 = m22. The general solution is

m2 =

[
α2

−2α2

]
(67)

for α2 �= 0. The following are all eigenvectors corresponding to λ2 = −4:[
1

−2

] [
15

−30

] [
−7
14

]
.

Assume that the system matrix A has no repeated eigenvalues, and that the n distinct eigenval-
ues are λ1, λ2, . . . , λn. Define the modal matrix M by an arbitrary set of corresponding eigenvectors
mi:

M =
[
m1 m2 . . . mn

]
. (68)

From Eq. (47) the homogeneous system response may be written

xh(t) = M




eλ1t

eλ2t

...
eλnt




=
[

α1m1 α2m2 . . . αnmn

]



eλ1t

eλ2t

...
eλnt


 (69)
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for any non-zero values of the constants αi. The rules of matrix manipulation allow this expression
to be rewritten:

xh(t) =
[
m1 m2 . . . mn

]



α1e
λ1t

α2e
λ2t

...
αneλnt




=
[
m1 m2 . . . mn

]



eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt







α1

α2
...

αn




= MeΛtα (70)

where α is a column vector of length n containing the unknown constants αi, and eΛt is an n × n
diagonal matrix containing the modal responses eλit on the leading diagonal

eΛt =




eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


 . (71)

At time t = 0 all of the diagonal elements in eΛ0 are unity, so that eΛ0 = I is the identity
matrix and Eq. (70) becomes

x(0) = MIα. (72)

For the case of distinct eigenvalues the modal matrix M is non-singular, and the vector α may be
found by pre-multiplying each side of the equation by M−1:

α = M−1x(0) (73)

specifying the values of the unknown αi in terms of the system initial conditions x(0). The complete
homogeneous response of the state vector is

xh(t) =
[
MeΛtM−1

]
x(0). (74)

Comparison with Eq. (11) shows that the state transition matrix may be written as

Φ(t) = MeΛtM−1 (75)

leading to the following important result:

Given a linear system of order n, described by the homogeneous equation ẋ = Ax,
and where the matrix A has n distinct eigenvalues, the homogeneous response of any
state variable in the system from an arbitrary set of initial conditions x(0) is a linear
combination of n modal components eλit, where the λi are the eigenvalues of the matrix
A.
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4.4 A Time Domain Method For Determining the State Transition Matrix

A Laplace domain method of deriving Φ(t) was described in Section 4.2. In this section we examine
another method based on the eigenvalues. Equation (75) provides the basis for the determination
of the state transition matrix for systems with distinct eigenvalues:

(1) Substitute numerical values into the system A matrix, and compute the system eigenvalues, a
modal matrix M, and its inverse M−1. A computer based linear algebra package provides a
convenient method for doing this.

(2) Form the diagonal matrix eΛt by placing the modal components eλit on the leading diagonal.

(3) The state transition matrix Φ(t) is Φ(t) = MeΛtM−1.

Example

Determine the state transition matrix for the system discussed in Example 2.2, and find
its homogeneous response to the initial conditions x1(0) = 1, and x2(0) = 2.

Solution: The system is described by the matrix

A =

[
−2 1
2 −3

]

and in Example 2.2 the eigenvalues are shown to be λ1 = −1, and λ2 = −4, and a pair
of corresponding eigenvectors are

m1 =

[
1
1

]
, m2 =

[
1

−2

]
.

A modal matrix M is therefore

M =

[
1 1
1 −2

]

and its inverse M−1 is

M−1 =
1
3

[
2 1
1 −1

]
.

The matrix eΛt is found by placing the modal responses e−t and e−4t on the diagonal:

eΛt =

[
e−t 0
0 e−4t

]
. (76)

The state transition matrix Φ(t) is

Φ(t) =
[
MeΛtM−1

]
=

1
3

[
1 1
1 −2

] [
e−t 0
0 e−4t

] [
2 1
1 −1

]

=
1
3

[
2e−t + e−4t e−t − e−4t

2e−t − 2e−4t e−t + 2e−4t

]
. (77)
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The homogeneous response for the given pair of initial conditions is

xh(t) = Φ(t)x(0)

or [
x1(t)
x2(t)

]
=

1
3

[
2e−t + e−4t e−t − e−4t

2e−t − 2e−4t e−t + 2e−4t

] [
1
2

]
(78)

or

x1(t) =
4
3

e−t − 1
3

e−4t (79)

x2(t) =
4
3

e−t +
2
3

e−4t. (80)

4.5 Systems with Complex Eigenvalues

The modal components of the response are defined by the eigenvalues of the matrix A, as found
from the roots of the characteristic equation

det [λI−A] = 0

which is a polynomial of degree n in λ, with constant and real coefficients. Any polynomial equation
with real coefficients must have roots that are real, or which appear in complex conjugate pairs.
The eigenvalues of A are therefore either real, or occur as pairs of the form λi,i+1 = σ ± jω,
where j =

√−1. In such cases there are modal response components in the matrix eΛt of the
form e(σ±jω)t = eσte±jωt. However, when the state transition matrix is computed the conjugate
components combine, and the Euler relationships

sinωt =
1
2j

(
ejωt − e−jωt

)
(81)

cosωt =
1
2

(
ejωt + e−jωt

)
(82)

may be used to express the elements of the state transition matrix in a purely real form eσt sin (ωt)
or eσt cos (ωt).

Example

Determine the state transition matrix for the undamped mechanical oscillator, with a
mass m = 1 Kg suspended on a spring with stiffness K = 100 N/m, as shown with its
linear graph in Fig. 1.

Solution: The state equations for this system are[
ḞK

v̇m

]
=

[
0 K

−1/m 0

] [
FK

vm

]
+

[
0

1/m

]
Fs(t). (83)

With the values given the state equations become[
ḞK

v̇m

]
=

[
0 100

−1 0

] [
FK

vm

]
+

[
0
1

]
Fs(t). (84)
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Figure 1: Simple spring-mass mechanical oscillator.

The characteristic equation det [λI−A] = 0 is

λ2 + 100 = 0 (85)

so that the eigenvalues are purely imaginary: λ1 = j10 and λ2 = −j10. A pair of
corresponding eigenvectors is found by substituting these values back into the equation
[λiI−A]mi = 0 and choosing an arbitrary scaling constant:

m1 =

[
1

0.1j

]
, m2 =

[
1

−0.1j

]
.

The modal matrix M and its inverse are

M =

[
1 1

0.1j −0.1j

]
M−1 =

1
−0.2j

[
−0.1j −1
−0.1j 1

]

and the state transition matrix is

Φ(t) =
1

−0.2j

[
1 1

0.1j −0.1j

] [
ej10t 0

0 e−j10t

] [
−0.1j −1
−0.1j 1

]

=




ej10t + e−j10t

2
10

ej10t − e−j10t

2j

−0.1
ej10t − e−j10t

2j

ej10t + e−j10t

2




=

[
cos(10t) 10 sin(10t)

−0.1 sin(10t) cos(10t)

]
. (86)

The homogeneous response to arbitrary initial values of FK and vm is therefore[
FK(t)
vm(t)

]
=

[
cos(10t) 10 sin(10t)

−0.1 sin(10t) cos(10t)

] [
FK(0)
vm(0)

]
(87)

and the individual state responses are

FK(t) = FK(0) cos(10t) + 10vm(0) sin(10t) (88)
vm(t) = −0.1FK(0) sin(10t) + vm(0) cos(10t) (89)

which are purely real responses, despite the imaginary system eigenvalues.
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4.6 Systems with Repeated Eigenvalues

The method for deriving the state transition matrix presented in the previous section is dependent
on the existence of the inverse of the modal matrix M, that is it must be non-singular. In general if
there are two or more eigenvalues with the same value, the eigenvectors are not linearly independent
and M−1 does not exist. It is possible to extend the method to handle repeated eigenvalues, as
described in references on linear system theory.

When there is a pair of repeated eigenvalues, instead of a linear combination of simple expo-
nential terms, the state response may have a pair of components eλit and teλit corresponding to the
two identical eigenvalues. This does not imply that the state transition matrix Φ(t) does not exist
for systems with repeated eigenvalues; it may be computed by other methods. It may however lose
the simple exponential form assumed throughout this note. For further information refer to more
advanced texts [1–5].

4.7 Stability of Linear Systems

A system is said to be asymptotically stable if the homogeneous response of the state vector x(t)
returns to the origin of the state-space from any arbitrary set of initial conditions x(0) as time
t → ∞. This definition of stability is equivalent to stating that the homogeneous response of all
state variables must decay to zero in the absence of any input to the system, or

lim
t→∞xi(t) = 0 (90)

for all i = 1, . . . , n. This condition may be rewritten in terms of the state transition matrix

lim
t→∞Φ(t)x(0) = 0 (91)

for any x(0). All of the elements of the state transition matrix are linear combinations of the modal
components eλit, therefore the stability of a system depends on all such components decaying to zero
with time. For real eigenvalues this requires that λi < 0, since any positive eigenvalue generates a
modal response that increases exponentially with time. If eigenvalues appear in complex conjugate
pairs λi,i+1 = σ ± jω the state homogeneous response contains components of the form eσt sin(ωt)
or eσt cos(ωt). If σ > 0 these components grow exponentially with time and the system is by
definition unstable. The requirements for system stability may be therefore summarized:

A linear system, described by state equations ẋ = AX+Bu, is asymptotically stable if
and only if all eigenvalues of the matrix A have negative real parts.

Three other separate conditions should be considered:

1. If one or more eigenvalues, or pair of conjugate eigenvalues, has a positive real part there is at
least one corresponding modal component that increases exponentially without bound from
any finite initial condition, violating the definition of stability.

2. Any pair of conjugate eigenvalues that are purely imaginary, λi,i+1 = ±jω with a real part
σ = 0, generate an undamped oscillatory component in the state response. The magnitude of
the homogeneous system response neither decays or grows, but continues to oscillate for all
time at a frequency ω. Such a system is defined to be marginally stable.

3. An eigenvalue with a value λ = 0 generates a modal component e0t that is a constant. The
system response neither decays nor grows, and again the system is defined to be marginally
stable.

17



Example

Discuss the stability of an inverted pendulum consisting of a mass m on the end of
a long light rod of length l which is mounted in a rotational bearing that exhibits a
viscous rotational drag, as shown in Fig. 2.

mg

m

�

�

B
2

K

(-mgR)
J

(mR )

(a) (b)

R

Figure 2: An inverted pendulum.

Solution: The system may be treated as a rotational system. The moment of inertia J
of the mass is J = ml2, and when the rod is displaced from the vertical, gravity exerts
a torque mgl sin θ about the bearing as shown. This system is inherently non-linear
because of the angular dependence of the torque, but it may be linearized by using
the small angle approximation sin θ ≈ θ for small θ. Then the restoring torque after
a displacement θ is −mglθ. This is the constitutive relationship of an ideal T-type
element, and allows the gravitational effect to be modeled as a torsional spring with
a negative spring constant K = −mgl. Let the frictional drag about the bearing be
represented by the damping coefficient B. The linear graph for the system is shown in
Fig. 2. Define the states to be the torque in the spring TK and the angular velocity of
the shaft Ω. The linearized state equations for this homogeneous system are:[

ṪK

Ω̇J

]
=

[
0 K

−1/J −B/J

] [
TK

ΩJ

]
. (92)

The characteristic equation is

det [λI−A] = det

[
λ −K

1/J λ + B/J

]
= 0 (93)

or

λ2 +
B

J
λ +

K

J
= 0

λ2 +
B

J
λ − g

R
= 0. (94)

The quadratic equation may be used to determine the two eigenvalues

λ1,2 = − B

2J
± 1

2

√(
B

J

)2

+
4g

R
. (95)

The following may be noted directly from Eq. (v).
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1. The quantity under the radical is positive, therefore both eigenvalues are real.

2.
1
2

√(
B

J

)2

+
4g

R
>

B

2J
(96)

so that there is always a positive eigenvalue.

We conclude, therefore, that the inverted pendulum is an unstable system and in its
linearized form will exhibit an exponential growth in angular displacement from the
vertical for any finite initial offset or angular velocity.

4.8 Transformation of State Variables

The choice of a set of state variables used to represent a system is not unique. It is possible to define
an infinite number of different representations by transforming the state vector by linear operations.
If a system is described by a state vector x, a new set of state variables x′ may be generated from
any linearly independent combination of the original state variables xi(t), for example:

x′
i(t) = pi1x1(t) + pi2x2(t) + · · ·+ pinxn(t) (97)

where the pij are constants. This linear transformation may be written in matrix form

x = Px′ (98)

where P is a non-singular n × n square matrix. (With this definition the elements pij in Eq. (90)
above are elements of P−1.) The state equations in the new state variables become

ẋ = Pẋ′ = APx′ +Bu (99)

and pre-multiplying each side by the inverse of P, the new set of state equations gives

ẋ′ =
(
P−1AP

)
x′ +

(
P−1B

)
u. (100)

The output equation must be similarly transformed

y = (CP)x′ +Du. (101)

The system is now represented by modified A, B, and C matrices. The state variable repre-
sentation is an internal system representation that is made observable to the system environment
through the output equations. The input-output system dynamic behavior should be indepen-
dent of the internal system representation. For the transformed state equations the characteristic
equation is defined in terms of the transformed A matrix

det
[
λI−

(
P−1AP

)]
= 0. (102)

If the substitution I = P−1IP is made:

det
[
λP−1P−P−1AP

]
= 0 (103)

det
[
P−1 [λI−A]P

]
= 0. (104)
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Since the determinant of a product is the product of the determinants, the characteristic equa-
tion is

det
[
P−1

]
det [λI−A] det [P] = 0 (105)

and because P is not singular, det [P] �= 0 and det
[
P−1

] �= 0, the transformed characteristic
equation is

det [λI−A] = 0 (106)

which is the same as that of the original state equations, leading to the following important con-
clusion:

The characteristic equation, and hence the eigenvalues λi and the modal response com-
ponents eλit, are invariant under a linear transformation of the system state variables.
These quantities are properties of the system itself and are not affected by the choice of
state variables used to describe the system dynamics.

If a transformation of the state variable representation is made, it is necessary to similarly
transform any initial conditions to the new representation using

x′(0) = P−1x(0). (107)

4.8.1 Transformation to Diagonal Form

A transformation that results in a diagonal form of the system matrix A can provide insight into
the internal structure of a system. Consider a system with distinct eigenvalues λ1, . . . , λn and a
modal matrix M, formed by adjoining columns of eigenvectors as described in Section 4.3. Let
x′ be the transformed state vector, defined by x = Mx′, so that the new set of state and output
equations are

ẋ′ =
(
M−1AM

)
x′ +

(
M−1B

)
u (108)

y = (CM)x′ +Du. (109)

The new system matrix is
(
M−1AM

)
. As in Eq. (53), the product AM may be written in terms

of the eigenvalues and eigenvectors

AM =
[
Am1 Am2 . . . Amn

]
=

[
λ1m1 λ2m2 . . . λnmn

]
(110)

because Ami = λimi is the relationship that defined the eigenvalue λi. Equation (108) can be
rearranged and written

AM =
[
m1 m2 . . . mn

]



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn




= MΛ (111)

where Λ is the diagonal n × n square matrix containing the system eigenvalues on the leading
diagonal

Λ =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


 . (112)
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If both sides of Eq. (109) are pre-multiplied by M−1

M−1AM = M−1MΛ = Λ, (113)

the transformed state equations are
ẋ′ = Λx′ +B′u. (114)

where B′ =
(
M−1B

)
. Equation (112) represents a set of n uncoupled first-order differential equa-

tions, each of which may be written

ẋi = λixi +
r∑

j=1

b′ijuj (115)

and does not involve any cross coupling from other states. The homogeneous state equations
ẋ′ = Λx′ are simply

ẋi = λixi. (116)

The state transition matrix for the diagonal system is Φ(t) = eΛt as given by Eq. (71)

Φ(t) =




eλ1t 0 . . . 0
0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt


 (117)

and the homogeneous response xh(t) = Φ(t)x(0) has the simple uncoupled form

xi(t) = xi(0)eλit (118)

for each state variable.
Systems with repeated eigenvalues may not be reducible to a diagonal form, but may be repre-

sented in a closely related form, known as the Jordan form [1–5].

Example

Transform the system[
ẋ1

ẋ2

]
=

[
−2 1
2 −3

] [
x1

x2

]
+

[
0
1

]
u(t)

to diagonal form and find the homogeneous response to an arbitrary set of initial con-
ditions.

Solution: The A matrix in this example is the same as that examined in Examples
2.2, and 3 that is

A =

[
−2 1
2 −3

]
.

In the previous examples it was shown that for this system the eigenvalues are λ1 = −1,
and λ2 = −4, and that a suitable modal matrix and its inverse are

M =

[
1 1
1 −2

]
, M−1 =

1
3

[
2 1
1 −1

]
.
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The transformed state variables are

x′ = M−1x =
1
3

[
2 1
1 −1

]
x (119)

or

x′
1(t) =

2
3

x1(t) +
1
3

x2(t) (120)

x′
2(t) =

1
3

x1(t)− 1
3

x2(t). (121)

The transformed state equations are

ẋ =
(
M−1AM

)
x+

(
M−1B

)
u (122)

or[
ẋ1

′

ẋ2
′

]
=

1
3

[
2 1
1 −1

] [
−2 1
2 −3

] [
1 1
1 −2

] [
x′

1

x′
2

]
+

1
3

[
2 1
1 −1

] [
0
1

]
u(t)

=

[
−1 0
0 −4

] [
x′

1

x′
2

]
+

[
1/3

−1/3

]
u(t) (123)

which is clearly diagonal in form with the eigenvalues on the leading diagonal of the
transformed A matrix. The state transition matrix is found by placing the modal
components on the diagonal:

Φ(t) = eΛt =

[
e−t 0
0 e−4t

]
(124)

and the homogeneous state response in the transformed system representation is x′
h(t) =

Φ(t)x′(0):

x′
1(t) = x′

1(0)e
−t (125)

x′
2(t) = x′

2(0)e
−4t (126)

where the transformed initial states are found from Eqs. (ii) and (iii):

x′
1(0) =

2
3

x1(0) +
1
3

x2(0) (127)

x′
2(0) =

1
3

x1(0)− 1
3

x2(0). (128)

5 The Response of Linear Systems to the Singularity Input Func-
tions

The singularity input functions (the impulse, step, and ramp functions) are a set of functions that
are commonly used to characterize the transient response characteristics of linear time-invariant
systems. The forced system response, given by Equations (25) and (26) is

x(t) = eAtx(0) + eAt
∫ t

0
e−AτBu(τ)dτ (129)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ, (130)
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and may be used to derive simple expressions for the response of linear time-invariant systems to
the individual singularity functions.

5.1 The Impulse Response

Assume that the input vector u(t) is a weighted series of impulse functions δ(t) applied to the r
system inputs:

u(t) = Kδ(t) =




k1

k2
...

kr


 δ(t). (131)

The vector K is used to distribute impulses among the r inputs. For example, if the response to a
single impulse on the jth input is required, then ki = 0 for all k �= j, and kj = 1. The state vector
impulse response is found by substituting u(t) = Kδ(t) into Eq. (26):

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKδ(τ)dτ. (132)

The sifting, or sampling, property of the delta function states that for any finite value of ∆
∫ 0+∆

0−∆
f(t)δ(t)dt = f(0),

which allows Eq. (132) to be simplified

x(t) = eAtx(0) + eAtBK

= eAt (x(0) +BK) . (133)

The effect of impulsive inputs on the state response is similar to a set of initial conditions; the
response for t > 0 is defined entirely by the state transition matrix. For an asymptotically stable
linear system the impulse response decays to zero as time t → ∞. The system output equations
may be used to find the impulse response of any output variable

y(t) = CeAt (x(0) +BK) +DKδ(t) (134)

which shows a direct feedthrough of the impulses for any system in which D �= 0.

Example

The electrical filter shown in Fig. 3 is installed in the power line of a computer in a
factory environment to reduce the possibility of damage caused by impulsive voltage
spikes created by other equipment. Measurements have shown that the transients are
approximately 100 volts in amplitude and have a typical duration of 10 µsecs. The
values of the filter components are L1 = 10mH, L2 = 10mH, and C = 1µfd. The load
resistance is 50 ohms. Find the effect of the filter on the voltage spikes.
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Figure 3: A third-order electrical filter, (b) its linear graph, and (c) a typical voltage pulse at its
input.

Solution: The system output is the voltage vR. The system has state variables iL1 ,
iL1 , and vC . The state and output equations are:


˙iL1

˙iL2

˙vC


 =


 0 0 −1/L1

0 −R/L2 1/L2

1/C −1/C 0





 iL1

iL2

vC


 +


 1/L1

0
0


Vs(t) (135)

vR =
[
0 R 0

] 
 iL1

iL2

vC


 , (136)

and the input is modeled as an impulse of strength 100× 10−5 = 10−3 volt-sec, that is
Vs(t) = 10−3δ(t), as determined from the area under the typical voltage spike shown in
Fig. 3c.

If the values of the system parameters are substituted into the matrices, they become:

A =


 0 0 −100

0 −5, 000 100
1, 000, 000 −1, 000, 000 0


 , B =


 100

0
0


 ,

C =
[

0 50 0
]

, and K = [0.001] .

From Eq. (134) the output impulse response is :

y(t) = CeAtBK (137)

= (CM) eΛt
(
M−1BK

)
, (138)

using Eq. (75). A linear algebra software package is used to find the system eigenvalues:

λ1 = −1210 + 13867j, λ2 = −1210− 13867j, λ1 = −2581,

and the modal matrix and its inverse:

M =


 0.0006 + 0.0072j 0.0006− 0.0072j 0.0388

0.0018− 0.0067j 0.0018 + 0.0067j 0.0413
1 1 1




M−1 =


 −6.2301− 36.673j −6.6450 + 35.4j 0.5161− 0.042j

−6.2301 + 36.673j −6.6450− 35.4j 0.5161 + 0.042j
12.4603 13.2900 −0.0322


 .
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The matrices M−1BK and CM are

M−1BK =


 −0.6230− 3.667j

−0.6230 + 3.667j
0.1246


 ,

CM =
[
0.0917− 0.3355j 0.0917 + 0.3355j 2.0666

]
so that the solution is:

vR(t) = CM


 e(−1210+13867j)t 0 0

0 e(−1210+13867j)t 0
0 0 e−2581t


M−1BK (139)

= 2.575e−2581t + (−1.2875− 0.1273j) e(−1210+13867j)t

+ (−1.2875 + 0.1273j) e(−1210−13867j)t (140)
= 2.575e−2581t

+ e−1210t (−2.575 cos(13867t) + 0.2546 sin(13867t)) . (141)

The impulse response is plotted in Fig. 4. The maximum voltage reached is approxi-

0 0.001 0.002 0.003 0.004

-1

0

1

2

3

4

Time (sec)

t

v (t)o

Figure 4: Response of the filter to an impulsive input of 100 volts amplitude and 10−5 seconds
duration.

mately 3 volts; a significant reduction from the input amplitude of 100 volts.

5.2 The Step Response

Assume that the input vector is a weighted series of unit step functions us(t) applied to the r
inputs, that is

u(t) = Kus(t) =




k1

k2
...

kr


us(t). (142)
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The vector K is used to distribute the step among the r inputs, and if the response to a unit step
on a single input channel is desired, for example the jth input, then ki = 0 for all k �= j, and
kj = 1. The state step response is found by substituting u(t) = Kus(t) into Eq. (26):

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKus(τ)dτ (143)

and because us(t) = 1 for all t > 0, the integral may be rewritten

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)BKdτ

= eAtx(0) + eAt
[∫ t

0
e−Aτdτ

]
BK (144)

where the order of the matrices must be preserved. If A−1 exists the element by element integration
of the matrix exponential may be found using the integration property described in Table 1

x(t) = eAtx(0) + eAtA−1
[
I− e−At

]
BK

= eAtx(0) +A−1
[
eAt − I

]
BK. (145)

since AeAt = eAtA, which may be shown directly from the series definition. The output response
is

y(t) = Cx+Du

= CeAtx(0) +CA−1
[
eAt − I

]
BK+DKus(t). (146)

If A is non-singular, that is if A does not have an eigenvalue λi = 0, then the step response
reaches a steady-state constant value xss as t → ∞ and

xss = lim
t→∞x(t) = lim

t→∞

[
eAtx(0) +A−1

[
eAt − I

]
BK

]
= −A−1BK (147)

because limt→∞
[
eAt

]
= 0. The steady-state output response is

yss =
[
−CA−1B+D

]
K. (148)

The steady-state response may be confirmed directly from the state equations. When steady-state
is reached, all derivatives of the state variables are, by definition, identically zero:

0 = Axss +BK (149)

giving the same result, xss = −A−1BK.

Example

The hydraulic system shown in Fig. 5 is driven by a constant pressure pump. At time
t = 0 the tank is empty and the pump is turned on at a constant pressure of 10 N/m2.
Find an expression for the flow in the inlet pipe for t > 0.
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Figure 5: A hydraulic system (a), and (b) its linear graph.

Solution: The system is modeled as shown. Lumped fluid inertance I and resistance
R1 elements are used to account for pressure drops in the pipe. The tank is modeled as
a fluid capacitance C, and the outlet valve is modeled as a linear fluid resistance. The
following values are assumed: I = 0.25 N-sec2/m5, R1 = 1 N-sec/m5, R2 = 1 N-sec/m5,
and C = 1 m5/N. The system state equations and the output equation for the inlet flow
are: [

ṖC

Q̇I

]
=

[
−1/R2C 1/C
−1/I −R1/I

] [
PC

QI

]
+

[
0

1/I

]
Pin(t) (150)

QI =
[
0 1

] [
PC

QI

]
. (151)

With the values given

A =

[
−1 1
−4 −4

]
, B =

[
0
4

]
, C =

[
0 1

]

The step response with zero initial conditions is

y(t) = CA−1
[
eAt − I

]
BK

=
(
CA−1M

)
eΛt

(
M−1BK

)
−CA−1BK. (152)

The system eigenvalues are λ1 = −2.5 + 1.323j, and λ2 = −2.5 − 1.323j. The input
weighting matrix K = [10], and

M =

[
−0.375− 0.331j −0.375 + 0.331j

1 1

]
,

M−1 =

[
1.512j 0.5 + 0.567j

−1.512j 0.5− 0.567j

]
, A−1 =

[
−0.5 −0.125
0.5 −0.125

]
.

The following matrices are computed:

CA−1M =
[
−0.3125− 0.1654j −0.3125 + 0.1654j

]
,

M−1BK =

[
−20 + 22.678j
−20− 22.678j

]
,

CA−1BK =
[
−5.0

]
,
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and used in the solution:

QI(t) =
[
−0.3125− 0.1654j −0.3125 + 0.1654j

]
(153)[

e(−2.5+1.3223j)t 0
0 e(−2.5−1.3223j)t

] [
−20 + 22.678j
−20− 22.678j

]
+ 5.0 (154)

= 5.0 + e−2.5t (−5 cos (1.323t) + 20.8 sin (1.323t)) . (155)

which is plotted in Fig. 6.
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Figure 6: Response of the hydraulic system to a 10N/m2 step in pump pressure.

5.3 The Ramp Response

If the input vector is a weighted series of unit ramp functions distributed among the r inputs, that
is

u(t) = Kt =




k1

k2
...

kr


 t. (156)

The ramp response may be found without solving the full response equation Eq. (26) by the use
of the integration property of linear systems, namely that if the response to an input u(t) is y(t),
the forced response to an input

∫ t
0 u(t)dt is

∫ t
0 y(t)dt. The ramp function t is the integral of the

unit step, therefore the forced component of the ramp response is simply the integral of the forced
component of the step response:

x(t) = eAtx(0) +
∫ t

0
A−1

[
eAτ − I

]
BKdτ

= eAtx(0) +A−1
[
A−1

[
eAt − I

]
− It

]
BK. (157)
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The output ramp response is found by substituting into the output equations:

y(t) = CeAtx(0) +CA−1
[
A−1

[
eAt − I

]
− It

]
BK+DKt. (158)

Example

Find the ramp response of a first-order system written in the standard form

τ
dx

dt
+ x = u(t)

where τ is the system time constant.

Solution: In state space form the first-order system is

ẋ = −1
τ

x +
1
τ

u (159)

The first-order ramp response (Eq. (157)) reduces to

x(t) = eatx(0) + a−1
[
a−1

[
eat − 1

]
− t

]
b, (160)

where in this case a = −1/τ and b = 1/τ . Substitution of these values gives

x(t) = e−t/τx(0) + t − τ
(
1− e−t/τ

)
(161)

which, if the initial condition x(0) = 0, is identical to the result given in Section 2.
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