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Linear Graph Modeling: Two-Port Energy Transducing Elements1

1 Introduction

One-port model elements are used to represent energy storage, dissipation, and sources within a
single energy domain. In many engineering systems energy is transferred from one energy medium
to another; for example in an electric motor electrical energy is converted to mechanical rotational
energy, while in a pump mechanical energy is converted into fluid energy. The process of energy
conversion between domains is known as transduction and elements that convert the energy are
defined to be transducers. Within a single energy domain power may be transmitted from one
part of a system to another; for example a speed reduction gear in a rotational system. In this
chapter we define two types of ideal energy transduction elements which can be used to represent
the process of energy transmission. We also develop methods to derive a set of state equations for
these types of systems.

Energy transduction devices include:

• Rack and pinions, ball-screws, and linkages for transduction between mechanical translation
and mechanical rotational systems.

• Motors and generators for transformation between electrical and mechanical rotational sys-
tems.

• Electromagnetic, magnetostrictive, and piezoelectric devices for transduction between elec-
trical and mechanical translational systems.

• Magnetohydrodynamic and electrohydrodynamic energy transfer for transductions between
electrical and fluid systems.

• Pumps, compressors, and turbines for transduction between fluid and mechanical rotational
systems.

• Ram, and piston-cylinder systems for transduction between fluid and mechanical translational
systems.

Several of these transducers are illustrated in Fig. 1.
Energy may also be transmitted within a single energy domain through transducers such as:

• Levers and linkages for transmission between one part of a mechanical rotational system and
another.

• Gear trains for transmission between one part of a mechanical rotational system and another.

• Electrical transformers for transmission between one part of an electrical system and another.

• Fluid transformers for transmission between one part of a fluid system and another.

Several of these transducers are illustrated in Fig. 2. The basic energy transduction processes
occurring in these types of devices can be represented by a two-port element, as shown in Fig.
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Figure 1: Examples of systems and devices using two-port transducers between different energy
domains.
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Figure 2: Examples of two-port transducers within a single energy domain.
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Figure 3: Two-port element representation of an energy transducer.

3, in which energy is transferred from one port to another. Each port has a through and an
across-variable defined in its own energy domain. Power may flow into either port. The two-port
transducer is a lossless element; for many physical systems it is necessary to formulate a model
for a transducer that consists of an ideal two-port coupled with one or more one-port elements to
account for any energy storage and dissipation that occurs in the real transducer. In the following
sections general two ideal energy transduction processes are defined, yielding two ideal two-port
transducers following the development given by H. M. Paynter [1]. Other two-port model elements
which represent dependent sources, and energy sources and dissipation elements have also been
defined [2,3].

2 Ideal Energy Transduction

We define an ideal energy transduction process as one in which the transduction is:

• Lossless — power is transmitted without loss through the transducer with no energy storage
or dissipation associated with the transduction process.

• Static — the relationships between power variables are algebraic and independent of time.
There are no dynamics associated with the transduction process.

• Linear — the relationships between power variables are represented by constant coefficients
and are linear.

A two-port transducing element as illustrated in Fig. 3 identifies a power flow P1 into port #1,
defined in terms of a generalized through-variable f1 and an across-variables v1:

P1 = f1v1, (1)

and a power flow P2 into port #2, also defined in terms of a pair of generalized variables f2 and v2:

P2 = f2v2. (2)

The condition that the two-port transduction process is lossless requires that the net instantaneous
power sums to zero for all time t:

P1(t) + P2(t) = f1v1 + f2v2 = 0, (3)

where it is noted that power flow is defined to be positive into both ports.
The most general linear relationship between the two pairs of across and through-variables for

the two-port transducer may be written in the following matrix form:
[

v1

f1

]
=

[
c11 c12

c21 c22

] [
v2

f2

]
(4)

where c11, c12, c21 and c22 are constants that depend on the particular transducer. With the
specification of the constants in this form, a unique relationship is established between the power
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Figure 4: Symbolic representation of transforming and gyrating transducers.

variables. When the additional condition is imposed that the transduction be lossless as well as
linear and static, Eqs. (3) and (4) may be combined to yield a single equation in terms of the
variables f2 and v2 (or equivalently in terms of f1 and v1) and the four transducer parameters:

c11c22v
2
2 + (1 + c11c22 + c12c21)v2f2 + c12c22f

2
2 = 0. (5)

(If the condition were derived in terms of f1 and v1, it would be of the same form as Eq. (5).)
Only two nontrivial solutions exist in which Eq. (5) is satisfied for arbitrary values of f2 and v2,
and which correspond to power transfer between ports #1 and #2. By appropriate selection of the
constants c11, c12, c21, and c22 these solutions yield two possible ideal two-port transducers:

Transforming Transducer:

c12 = c21 = 0 and c22 = −1/c11, (6)

Gyrating Transducer:
c11 = c22 = 0 and c21 = −1/c12. (7)

These two general solutions are the only nontrivial solutions with power transfer, and give two
distinct forms of ideal two-port transduction.

The ideal two-port transformer relationship, defined by the conditions of Eq. (6), may be written
by substituting c11 = TF : [

v1

f1

]
=

[
TF 0
0 −1/TF

] [
v2

f2

]
(8)

where TF is defined to be the transformer ratio. Equation (8) states that in a transformer the across
variable v1 is related by a constant, TF , to the across-variable v2 on the other side, and through-
variable f1 is related by the negative reciprocal of the same constant (−1/TF ) to through-variable
f2:

v1 = TF v2 (9)

f1 = −
(

1
TF

)
f2. (10)

This transduction process is called a transformer because it relates across-variables to across-
variables and through-variables to through-variables at the two ports. The symbol for the ideal
transformer is shown in Fig. 4.

Similarly the ideal two-port gyrating transducer, described by the conditions of Eq. (7), may
be written by substituting c12 = GY :

[
v1

f1

]
=

[
0 GY

−1/GY 0

] [
v2

f2

]
(11)

5



T T

W

W W21

1

1

2

2

W

r

r

2

1

Figure 5: A gear train as a transforming transducer.

where GY is defined to be the gyrator modulus. Equation (11) states that the across-variable v1 at
port #1 is related by a constant, GY , to the through-variable f2 at port #2, and the through-variable
f1 is related by the negative reciprocal constant −1/GY to the across-variable v2:

v1 = GY f2 (12)

f1 = −
(

1
GY

)
v2 (13)

The transduction process is termed gyration because it relates across-variables to through-variables
and vice versa. The two-port symbol for the gyrator is shown in Fig. 4.

2.1 Transformer Models

Many engineering transduction devices and mechanisms are transformers. In this section we ex-
amine ideal models of a gear train, a rack and pinion drive (commonly employed in automotive
steering systems), and a permanent magnet electric motor/generator (commonly used in control
systems).

2.1.1 The Gear Train

A pair of mechanical gears, used to change the torque and speed relationship between two rotational
power shafts is illustrated in Fig. 5.

If gear #1 has n1 teeth at an effective radius r1, and meshes with gear #2 which has n2 teeth
at a radius r2, the gear ratio N for the two gears is defined to be the ratio of the number of teeth
on the two gears, or equivalently the ratio of the two radii:

N =
n1

n2
=

r1

r2
. (14)

The torque and angular velocity sign convention for each gear is defined in Fig. 5, with the as-
sumption that power flow is defined as positive into each power port. For rotation of the two gears
without slippage, the linear velocity vt tangent to the pitch radius at the meshing teeth must be
identical for each gear:

vt = r1Ω1 = −r2Ω2. (15)

Therefore the angular velocity of the two shafts must be related:

Ω1 = −r2

r1
Ω2 = − 1

N
Ω2 (16)
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where the sign conventions are chosen according to the definitions of positive angular velocity for
each gear. Furthermore, at equilibrium the linear force F1 tangent to the pitch radius on the
meshing teeth of gear #1 must be equal and opposite to the linear force F2 tangent to the pitch
radius on gear #2:

F1 =
T1

r1
= −F2 =

T2

r2
(17)

consistent with the definition of torques identified in Fig. 5, or

T1 =
(

r1

r2

)
T2 = NT2 (18)

Equations (16) and (18) define a transformer relationship, which may be written in the matrix form
of Eq. (8) as: [

Ω1

T1

]
=

[
−1/N 0

0 N

] [
Ω2

T2

]
(19)

where it is noted that to establish consistency with the torque and angular velocity sign conventions
in Fig. 5, the transformer modulus TF is −1/N .

2.1.2 A Rack and Pinion Drive

Rack and pinion drive systems are used to convert rotary motion to translational motion and vice
versa as shown in Fig. 6. The rotary input at the pinion shaft is expressed in terms of its angular
velocity Ω and the applied torque T , while the translational power associated with the rack is
expressed in terms of its linear velocity v and force F . The analysis of the system as an ideal
transducer assumes that both elements are massless, and that no frictional losses occur at the
contact between the teeth. With the further assumption that no slippage occurs between the rack
and pinion, the linear velocity of the rack is related to the angular velocity of the pinion directly
by the pinion radius, r, that is

v = rΩ (20)

For equilibrium, the force F on the rack must be related to the torque on the pinion shaft T at the
meshing teeth by the relationship

F = −
(

1
r

)
T, (21)

where a negative force is required to balance the positive torque as shown in Fig. 6. Equations (20)
and (21) define the rack and pinion as a transformer because of the direct relationship between the
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across-variables v and Ω, and between the through variables F and T at the two ports. In this case
the transformer ratio TF is simply the pinion radius, r, and the transduction equations are:

[
v
F

]
=

[
r 0
0 −1/r

] [
Ω
T

]
. (22)

The rack and pinion can be used either to transform rotary motion to translational motion if the
shaft is driven from an external source, or to transform translational motion to rotary motion if
the rack is connected to a translational source.

2.1.3 Electromagnetic Transducers

Electromagnetic transducing elements include electric motors, electrical meters, solenoids, micro-
phones, and phonograph pick-ups. Their operation depends on two complementary laws, (i) the
Lorentz law, which states that an electrical charge moving in a magnetic field experiences a force,
and (ii) Faraday’s law, which states that an electrical voltage is induced in a coil of wire that moves
in a magnetic field.[4] Figure 7 shows a particle with electric charge q moving with vector velocity
v along a wire in a magnetic field of flux density B. The particle experiences a force ∆F given by
the vector cross-product

∆F = q (v ×B) , (23)

which states that the direction of the force is at right angles to the direction of the motion v and
the magnetic flux B, and has a magnitude proportional to the component of the vector v that is
perpendicular to B, that is to |v| sin θ in Fig. 7. If the wire has length ` and there are N such
discrete charged particles within the wire, the total transverse force is:

F = Nq (v ×B) (24)
= (I×B) ` (25)

where the the vector current I = Nqv/` is the total charge passing through any cross-section of
the wire in unit time. If a coil is constructed by winding the wire into a circular or rectangular
configuration, the total electromagnetic force on the coil is equal to the sum of the forces acting on
each elemental section of the coil.

Equation (23) also implies that if a mobile charge in a conductor is transported physically with
velocity v in a magnetic field of uniform flux density B, it experiences a force that tends to displace
it along the conductor. The resulting migration of the charged particles induces a voltage difference
proportional to the velocity between the two ends of the wire. The induced voltage, Vi, in a wire
of length ` travelling with velocity v perpendicular to a magnetic field with flux B is equal to:

Vi = `Bv (26)

If the conductor is wound into a coil configuration, the total voltage induced by motion is found
by integrating the elemental potential differences along all sections of the coil. Motion induced
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voltages sum to zero in a coil that is subjected to a translational motion in a uniform magnetic
field, but sum to a finite value if the coil is rotated in the same field.

Equations (25) and (26) indicate that there is a direct relationship between force (or torque)
and current, and a similar relationship between velocity (or angular velocity) and voltage. Elec-
tromagnetic transducers as a class therefore may be represented as transformers. The particular
transformer ratio for any device must be derived from the system structure and the magnetic flux
geometry.

2.1.4 The Permanent Magnet DC Electric Motor

A permanent magnet direct current (DC) motor-generator transforms energy between the electrical
and mechanical rotational energy domains. Its basic structure is illustrated in Fig. 8. In applica-
tions where the transduction is primarily electrical to mechanical rotational energy, the transducer
is designated to be a motor, while in applications where the transduction is from mechanical to elec-
trical energy, the transducer is usually designated a generator. In both cases the electromechanical
coupling determines the motor-generator characteristics.
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Figure 8: The dc permanent magnet motor/generator.

The motor-generator consists of a rotor containing an electrical coil that rotates in the magnetic
field produced by a pair of permanent magnets. The electromechanical coupling constant may be
derived by assuming that the magnets generate a radial magnetic flux, with constant flux density
B which is assumed to be uniform around the circumference of the rotor. If the radius of the rotor
is r, its length is `, and it is wound with an electrical coil with N turns carrying a current i, a force
F = B`i perpendicular to the local magnetic field is produced on each length of wire. (No force is
exerted on the ends of the coil.) Each of the N turns in the coil has two sides interacting with the
field, so that the total torque exerted on the rotor is its radius multiplied by the number of wire
lengths, 2N , multiplied by the magnetic force on each wire, or

T = −2rNB`i. (27)

Additionally, as the rotor spins with angular velocity Ω, each wire section passes through the
magnetic field with a tangential velocity v = rΩ generating an induced voltage between the two
ends of each wire. The total voltage v induced in all wire sections is equal to the total number
of wire lengths (2N) multiplied by the voltage induced in each wire traveling at the rotational
velocity:

v = 2NB`rΩ (28)
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In summary the relationship for the transducer may be written:
[

v
i

]
=

[
2NB`r 0

0 −1/2NB`r

] [
Ω
T

]
(29)

where the transformer constant is:
TF = 2NB`r. (30)

The sign convention for the motor-generator is consistent with the definition that power is defined
as positive into the transducer at both ports, and the relationship of Eq. (30) represents the energy
transduction for both motor and generator applications. In practice, many motor manufacturers
adopt a sign convention with electrical power into the transducer as positive and mechanical power
out as positive and express the transduction relationships in terms of two constants as:

T ∗ = Kti (31)
V = KvΩ (32)

where Kt is the motor torque constant, and Kv is the motor back-emf voltage constant. If the
manufacturer’s sign convention is adopted with T ∗ = −T , these two constants may be expressed
as: [

v
i

]
=

[
Kv 0
0 1/KT

] [
Ω
T ∗

]
(33)

and by comparing Eqs. (33) and (29), the standard motor constants are identified as:

Kv = Kt = 2NB`r (34)

If a consistent set of units such as the SI system is utilized in specifying Kv and Kt, the two
constants are numerically equal; however common practice for manufacturers is to utilize English
units, which are not a consistent set and thus in many motor and generator specifications the values
for Kv and Kt are not numerically equal, and conversion to a consistent set of units is required in
model formulation.

2.2 Gyrator Models

2.2.1 The Hydraulic Ram

A common engineering example of a gyrating transducer is the hydraulic ram, consisting of a
cylinder and piston as shown in Fig. 9, in which conversion occurs between mechanical translational
power and fluid power. For the ram illustrated in Fig. 9, the mechanical force F on the piston is

Area Av

F Q

P

Figure 9: The hydraulic ram as a gyrating transducer.

related directly to the fluid pressure P by the piston area A:

F = AP (35)
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and with the sign convention adopted in the figure, the velocity v of the shaft is related to the fluid
volume flow rate Q by the negative reciprocal of the area:

v = − 1
A

Q (36)

Equations (35) and (36) show the linear relationship between an across-variable in one energy
domain and the through-variable in the other. The ram therefore acts as a gyrator, with the
gyration constant:

GY = − 1
A

. (37)

In matrix form the hydraulic ram equations are:
[

v
F

]
=

[
0 −1/A
A 0

] [
P
Q

]
. (38)

The ram is one example of a class of positive displacement fluid-mechanical devices that are
represented by gyrators. Other similar transducers include gear pumps and hydraulic motors, vane
pumps and hydraulic motors, and piston pumps and hydraulic motors.

3 Multiport Element Models

The linear graph symbols used to represent the ideal transformer and gyrator two-port elements
are illustrated in Fig. 10. The sign convention adopted for each of the two-port elements is that
power flowing into the element at either port is defined to be positive. The graph element implies a
direct coupling between the across and through-variables associated with each branch of the graph,
as defined by the two-port elemental equations (8) and (11).

The two-port elements are inherently four terminal elements, and are in general connected to
four distinct nodes in a system graph. Thus a system model containing an electromechanical trans-
ducer contains two reference nodes, one mechanical and one electrical, as illustrated in Example
3. Similarly Example 3, which illustrates the use of a gyrating transducer to couple the fluid and
mechanical domains, contains two reference nodes. Systems with two-port transducing elements
often generate system graphs that are not connected graphs because of the multiple energy domains
represented.

Many physical transducing elements cannot be modeled directly with a simple energy conserving
two-port element. They have implicit energy dissipation and storage phenomena associated with
the transduction, and these must be accounted for by the inclusion of additional lumped parameter
elements in the model.

Consider, for example, the transduction between the electrical and rotational energy domains in
a permanent magnet dc motor/generator. The ideal energy conversion relationships are described
by Eq. (29). The modeling of a real motor, however, may need to account for the following additional
phenomena:
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Figure 11: Examples of two-port energy conversion devices with associated lumped elements to
account for internal energy storage and dissipation.

• The windings in the motor armature will have finite electrical resistance R. The voltage drop
vR = iR across this resistance may be significant in a given modeling situation.

• The motor windings consist of many turns of wire, usually on a high permeability ferrous
core, and will therefore exhibit properties of inductance associated with energy storage in the
magnetic field. It may be important to account for the voltage drop vL = Ldi/dt in a given
model.

• The rotating armature will have a finite moment of inertia J ; it may be important to include
the kinetic energy storage in a model.

• The internal bearings in the motor may have significant frictional losses that need to be
described by a viscous damping coefficient B.

The two electrical phenomena share the common motor current i, and the voltage drop may be
represented by series lumped R and L elements in the electrical circuit. The energy storage and
dissipation in the rotational phenomena may be represented by lumped J and B elements in parallel
with the mechanical side of the two-port element. The complete model for the dc motor is shown
in Fig. 11a.
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The decision whether or not to include these additional elements in a system model must be
based on an analysis of the complete system and its expected operating mode. For example,
a decision to include the armature inductance L in a model should be based on the estimated
significance of the voltage drop vL during the normal operation of the motor. If the motor is
expected to act in a mode where the torques and drive current change slowly, it may be acceptable
to ignore the inductive effects, but if the same motor is to be used in a “high performance” dynamic
system where the voltage vL is significant the inductance L may need to be included in the model.

Two additional examples of elements that might be included in power conversion devices are
shown in Fig. 11. In Fig. 11b a positive displacement fluid pump is shown with additional elements
to account for the inertia J of the shaft and rotor, viscous damping B to account for frictional effects
in the bearings and rotating fluid seals, and a fluid leakage resistance Rf to account for the fact
that some flow does leak past the seals. Figure 11c shows a rack and pinion drive with additional
elements to account for the mass m and sliding friction B of the translational rack element, and
inertia J and rotational damping coefficient Br to account for the rotating pinion and its bearings.

Example

An DC electric motor is used to drive a turntable in a high quality audio reproduction
system. Because very small variations in the turntable speed can have an audible effect
on the sound quality, the variation in turntable speed in response to changes in the in-
put voltage is of interest. Form a system graph model of an electro-mechanical system,
shown in Fig. 12.

Solution: The construction of the linear graph model begins with the selection of ele-
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L

1 2
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Figure 12: Linear graph model of a electric motor drive with an inertial load.

ments. The input to the motor is assumed to be a prescribed voltage and is represented
as a voltage source Vs(t). The motor armature (rotor) coil has both inductive energy
storage and energy dissipation, and is modeled by a series inductance L and resistance
R. The electro-mechanical conversion of energy is represented by an ideal two-port
transformer, with the electro-mechanical coupling relating torque T to current im, and
angular velocity Ω to the motor internal voltage (back emf) Vm generated.

The two-port transformer relationships are:

T = Kim (39)

Ω = − 1
K

Vm (40)
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and are represented explicitly by the two-port linear graph element. Figure 12 shows
the turntable to be supported in external bearings. We assume that there are significant
frictional effects in the internal motor bearings and in the external bearing, and that
these may be combined to form an effective rotational viscous damping coefficient B.
Similarly, we assume that the moments of inertia of the armature and the turntable
may be combined to form an equivalent inertia J .

The construction of the system graph may start with the mechanical system. The inertia
and damper share a common angular velocity Ω and therefore are inserted in parallel
between a node representing the turntable angular velocity and the rotational reference
node. The rotational side of the two-port transformer element (motor) also has the
same angular velocity as the turntable, and is inserted in parallel with the inertia and
damper.

The electrical side of the two-port is placed with one node at the electrical reference
node, and with the second node representing the internal motor voltage. The motor
coil, represented by the inductor and resistor elements, has a common current with
the electrical branch of the transformer and thus is represented as a series connection.
The voltage source acts with respect to ground, and is assigned a sign convention to
ensure that positive input voltage generates a positive current flow to the motor. The
completed linear graph is drawn in Figure 12(b).

The linear graph demonstrates that in normal operation the voltage v1 applied to the
ideal transformer is not the terminal voltage Vs(t). The dynamic behavior of the drive
system will be affected by the resistance and inductance elements.

Example

Form a dynamic model of a system consisting of a positive displacement pump which
drives a hydraulic ram to move a mass sliding on a surface as represented in Fig. 13. The
pump is driven from a constant angular velocity source Ωs(t). The dynamic response
of the mass to variations in the angular velocity Ωs(t) is of interest.

Solution: The hydraulic part of the system is represented by an angular velocity

v = 0P = Patm

1 2
B K

m

W (t)

f

s

R l

W = 0

R

(b)  Linear graph(a)  System

m
K

v

B

Q

Area A

P
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Figure 13: Linear graph model of a hydraulic linear actuator system.

source driving a transformer based pump model with a leakage resistance Rl included
to account for internal fluid flow around the seals in the pump. A fluid resistance Rf is
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Figure 14: Linear graph representation of two-port elements with a common node (v1 = va − vc

and v2 = vb − vc).

included to account for pressure drops in the pipe connecting the pump and hydraulic
ram. The hydraulic-mechanical interface is represented by a gyrator with:

F = AP (41)

V = − 1
A

Q (42)

where A is the piston surface area, By convention power is defined as positive into
both branches and thus a positive fluid volume flow Q generates a negative mechanical
velocity.

The system graph may be constructed by first considering the mechanical system, in
which the mass is referenced to the mechanical reference node. The mechanical sub-
system consists of three elements: a mass m, a spring K, and a damper B all sharing a
common velocity (across-variable) and therefore connected in parallel across the gyrator
port.

The hydraulic branch of the gyrator (the piston/cylinder) has flow supplied by the
pump through the resistance Rf , therefore the three hydraulic branches are connected
in series. The signs associated with the hydraulic system are selected so that positive
pressure with respect to the hydraulic reference node generates a positive volume flow
to the ram.

The complete linear graph is shown in Figure 13. The two-port elements divide the
system into three sections, each with its own reference node; the system graph is not a
connected graph.

Two-port transducers which represent energy transfer within a single energy domain may share a
common reference across-variable on each side and effectively reduce from a four terminal element
to a three terminal element. In such cases two of the nodes are implicitly joined to form a common
reference, and a connected graph, as shown in Fig. 14. A common reference, or equivalent three
terminal representation, is required for two-ports which represent:

(1) mechanical translational to mechanical translational energy transfer, such as occurs in a me-
chanical lever, since both port velocities must be referenced to a common inertial reference
frame;

(2) mechanical rotational to mechanical rotational energy transfer, such as occurs in a gear train,
since both port angular velocities must be referenced to a common frame; and

(3) fluid to fluid energy transfer, such as occurs in a fluid transformer, since both port pressures
must be referenced to a common constant pressure.
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When there is a common reference node shared between the two sides of a two-port element, the
two sides form a connected region of the overall graph. The formation of a linear graph model
incorporating a common node is illustrated in Example 3.

Example

In many engineering applications, D.C. motors are connected to loads through a gear
train, as shown in Fig. 15, in which a D.C. motor is coupled to an inertial load though
a speed-reducing gear train with ratio N . It is desired to form a system model which

+

-
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B

B

J

Gear ratio n
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2

Motor R L

1 2

3 4

BB
1 2

J

W = 0refv = 0
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(b)  Linear graph(a)  System

Figure 15: Electric motor - speed reducer drive system.

relates the motor voltage to the angular speed of the flywheel.

Solution: The D.C. motor is represented as described in Example 3, using an armature
resistance R and inductance L to account for voltage drops in the coil, and a two-port
electrical to mechanical rotational transformer with coupling constant K to model the
electromechanical conversion. The gear train is represented as a rotational transformer
with a gear ratio N .

The flywheel is represented as a rotational inertia J . All the shafts in the system are
assumed to be rigid and two sets of bearings represented by rotational dampers B1 and
B2 are shown in Fig. 15. The system has an electrical reference node and an angular
velocity reference node. On the electrical side, the voltage source defines the voltage
between the reference node and the series connection of the resistance, inductance and
the electrical side of the two-port transduction element.

The rotational part of the graph contains the inertia J and bearing damper element
B2, in parallel with branch 2 of the gear train. Branch 1 of the gear train is in parallel
with bearing damper B1 and branch 2 of the electric motor element.

The linear graph model is shown in Fig. 15, where the two-port transducer for the
electrical motor is connected to four distinct nodes, and is effectively a four-terminal
device, while the two-port element representing the gear train is connected effectively
as a three-terminal element since two terminals are joined at a common reference node.
The overall graph is not a connected graph because the electromechanical two-port has
two separate reference nodes.
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Figure 16: A mechanical system driven through a floating pulley.

Example

A single massless, frictionless pulley with radius r is attached to a mechanical system
as shown in Fig. 16(a), and is driven through a flexible line of fixed length L. The
two ends of the line are connected to two independent velocity sources Va(t) and Vb(t).
Derive a linear graph based model that will describe the system dynamics.
Solution: The kinematics of the pulley drive system are shown in Fig. 16(a). If the

distances of the two ends of the line from a reference point are xa(t) and xb(t), then

L = (xa − xc) + (xb − xc) + πr

which when differentiated and rearranged gives the velocity of point (c) as

vc =
1
2
(va + vb). (43)

Because the pulley is massless and there are no frictional forces in the bearings, the
force in the line FL is continuous. The net force acting on the mechanical system at
point (c) is therefore

F = 2FL (44)

The system linear graph must embody Eqs. (i) and (ii). The linear graph is constructed
by realizing that the velocity (across-variable) of point (c) is the sum of two components,
Va/2 and Vb/2, and that the force (through-variable) is twice that associated with either
source, that is 2F . These facts indicate that a pair of transformer relationships exist
between the forces and the velocity components associated with the sources and that
experienced by the mechanical system. Figure 16(b) shows how these relationships may
be expressed by the use of two transformers, each driven by a velocity source, and
with the two branches 2 and 4 connected in series. Note that for drawing convenience
the reference node v = 0 has been drawn as three separate nodes; they should all be
considered as one node.

4 State Equation Formulation

The generation of state equations for systems containing two-port transduction elements is similar
to the method described for systems of one-port elements. The major difference lies in the step-
wise procedure for constructing the normal tree because of the four terminal nature of the two-port
elements.
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Figure 17: The two allowable tree configurations for a transformer. The links are shown as dotted
lines.

4.1 Graph Trees for Systems of Two-Port Transduction Elements

Two-port elements are essentially four terminal elements, and in general are connected to four
distinct nodes on the system graph. When there is no common reference node between the two
sides of a two-port element the system graph is effectively partitioned into two distinct connected
graphs, each with a separate reference node.

If a system graph with a total of N nodes and B branches is divided into Nd separate connected
linear graphs by two-port elements, the overall system tree consists of Nd section trees. If the ith
such section contains Ni nodes, the tree for that section contains Ni−1 branches. The total number
of branches BT in any tree of the system graph is then:

BT =
Nd∑

i=1

(Ni − 1) = N −Nd, (45)

and the number of links BL in any system tree is:

BL = B −BT = B −N + Nd. (46)

For a system graph containing SA across-variable sources and ST through-variable sources, and
containing Nd distinct connected graphs, there are a total of B − SA − ST passive branches, each
with an elemental equation. The B − SA − ST constraint equations required to solve the system
may be found from BL − ST = B −N + Nd − ST compatibility equations formed by replacing the
passive links in the tree, and BT − SA = N − Nd − SA continuity equations formed by creating
contours that cut a single tree branch.

4.2 Specification of Causality for Two-Port Elements

The elemental equations for transformers and gyrators impose causality constraints across the two-
port element and generate a pair of rules that specify how the branches of a two-port element may
be entered into a tree. Furthermore the primary variables are defined to be the across-variables on
tree branches and the through-variables on tree links. The elemental equations for the two-port
elements relate variables across the element, so that when the condition is imposed that only one of
the two variables on each branch may be considered as primary, only two possible causal conditions
may be defined for a two-port element:

The Transformer: For the transformer shown in Fig. 17, branch #1 has across and through-
variables v1 and f1, while branch #2 has variables v2 and f2. The transformer equations

v1 = TF v2 (47)

f1 = −
(

1
TF

)
f2 (48)
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Figure 18: The two allowable tree configurations for a gyrator. The links are shown as dotted lines.

specify that if v1 (or v2) is considered to be a primary variable, then v2 (or v1) must be a secondary
variable. Similarly, if f1 (or f2) is chosen as a primary variable, f2 (or f1) is by definition a secondary
variable. The transformer equations allow only one across-variable and one through-variable to be
used as primary variables.

Since only one across-variable may be a primary variable for a transformer, only one branch of
a transformer may appear as a tree branch. In other words either:

(1) branch # 1 appears in the tree and branch # 2 is a link, in which case v1 and f2 are the two
primary variables, and v2 and f1 are secondary variables, or

(2) branch # 2 appears in the tree and branch # 1 is a link, so that v2 and f1 are the two primary
variables and v1 and f2 are secondary variables.

These two allowable causalities are shown in Fig. 17a and 17b.

The Gyrator: The generation of a set of independent compatibility and continuity equations
from a tree structure containing a gyrator requires a different set of causal conditions. For an ideal
gyrator, such as shown in Fig. 18, with elemental equations:

v1 = GY f2 (49)

f1 = −
(

1
GY

)
v2 (50)

it can be seen that:

(1) if v1 is taken as a primary variable, then v2 must also be considered a primary variable, since
f2 is a secondary variable, or

(2) if f1 is considered to be a primary variable, then because v2 is then by definition a secondary
variable, f2 is also a primary variable.

To satisfy the first case, with two primary across-variables, both gyrator branches must be placed in
a tree. To satisfy the second possibility, where both through-variables are primary, the two gyrator
branches must both be tree links. The two allowable tree structure for gyrators are illustrated in
Fig. 18a and Fig. 18b.

4.3 Derivation of the Normal Tree

The derivation of a normal tree for a system containing two-port elements is an extension of the
procedure for systems of one-port elements. The system normal tree for a system graph model
containing two-port transducers should be formed in the following steps:

Step 1: Draw the system graph nodes.
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Step 2: Include all across-variable sources as tree branches. (If all across-variable sources cannot
be included in the normal tree, then the sources must form a loop and compatibility is
violated.)

Step 3: Include as many as possible of the A-type elements as tree branches such that the com-
pletion of the tree does not require the placement of both branches of a transformer or one
branch of a gyrator in the tree. (Any A-type element which cannot be included in the normal
tree is a dependent energy storage element.)

Step 4: Include one branch of each transformer, and both or neither branch of each gyrator, in the
tree so that the maximum number of T-type energy storage elements remain out of the tree.
If this step cannot be completed, the system model is invalid.

Step 5: Attempt to complete the tree by including as many as possible D-type dissipative elements
in the tree. It may not be possible to include all D-type elements.

Step 6: If the tree is not complete after the addition of D-type elements, add the minimum num-
ber of T-type energy storage elements required to complete the tree. (Any T-type element
included in the tree at this point is a dependent energy storage element.)

Step 7: Examine the tree to determine if any through-variable sources are required to complete
the tree. If any through-variable source can be inserted into the normal tree, then that source
cannot be independently specified and continuity is violated.

System graphs and their normal trees for some simple systems containing one-port energy storage
elements and an ideal two-port are illustrated in Fig. 20. In some cases a choice of two-port
causality exists in formulating the normal tree. For example, in cases 2, 3, and 4 in Fig. 20 either
causality results in the identification of only one state variable. The two energy storage elements are
dependent, and the energy storage variable on either may be used as the state variable. In cases 1,
5, and 6, however, the choice of two-port causality leads either to two state variables or none. The
procedure outlined above usually chooses the configuration that maximizes the number of selected
state variables. In more complex systems, with many sources and energy storage elements, system
structural constraints may require the use of the representations 1B, 5A, and 6B in order to identify
the maximum number of independent energy storage elements in the complete system.

Example

Derive the normal tree for the system shown in Fig. 19a in which an electric motor is
coupled to an inertial load through a speed reducing gear train.
Solution: The system linear graph in Fig. 19b contains two, two-port elements to

represent the motor and the gear train. The motor is represented as a four terminal
transducer, while the gear train has each branch referenced to a common reference
angular velocity and is represented as a three terminal element. The system graph
consists of two connected graphs and has N = 7 nodes, and two distinct sections
(Nd = 2). The number of branches in the two sections of the system graph normal
tree is therefore BT = N − Nd = 5. The normal tree is constructed by inserting first
the voltage source Vs, followed by the inertia element J . In this case there is no choice
on the causality assignment, for branch 2 of the gear train transformer must be in the
links, requiring that branch 1 be a normal tree branch. With this assignment, branch 2
of the motor must also be in the links. The only D-type element which may be included
in the tree branches is the electrical resistor R.
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Figure 19: Generation of the normal tree for a electromechanical system consisting of an electric
motor driving an inertial load through a gear train.

4.4 State Equation Generation

With the normal tree, we can begin the derivation of the state equations for systems with two-port
elements by choosing the primary variables as the across-variables on all branches of the normal
tree and the through-variables on all normal tree links, including those associated with the two-port
elements. The system state variables are those primary variables associated with the n independent
energy storage elements defined by the normal tree, that is:

(a) the across-variables of the A-type energy storage elements in the normal tree, and

(b) the through-variables of the T-type energy storage elements in the normal tree links.

The procedure for deriving n state equations in terms of the n state variables and S source variables
is similar to that for systems of one-port elements, with the addition that the two elemental equa-
tions for each two-port element must be included in the derivation. The procedure is illustrated in
the following examples:

Example

A sketch of a fixed field D.C. motor drive system, with its system graph model containing
B = 7 branches and N = 6 nodes, is shown in Fig. 21. The motor is represented as a
four terminal element, generating two distinct connected graph sections in the system
graph (Nd = 2), so that there is BT = N − Nd = 4 branches in the normal tree, and
two branches in the links. The system normal tree is shown in Fig. 21c.

From the normal tree in Fig. 21c:

Primary variables: Vs(t), ΩJ , vR, iL, TB, v1, T2

Secondary variables: Is(t), TJ , iR, vL, ΩB, i1, Ω2

System order: 2
State variables: ΩJ , iL
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The B − S = 6 elemental equations written in terms of primary variables are:

dΩJ

dt
=

1
J

TJ (51)

diL
dt

=
1
L

vL (52)

vR = RiR (53)
TB = BΩB (54)

v1 =
1

Ka
Ω2 (55)

T2 = − 1
Ka

i1 (56)

The N −Nd − SA = 3 continuity equations are:

TJ = −T2 − TB (57)
iR = iL (58)
i1 = iL. (59)

The B −N + Nd − ST = 3 compatibility equations are:

vL = Vs − vR − v1 (60)
ΩB = ΩJ (61)
Ω2 = ΩJ (62)
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The secondary variables may be directly eliminated from the elemental equations:

dΩJ

dt
=

1
J

(−T2 − TB) (63)

diL
dt

=
1
L

(Vs − vR − v1) (64)

vR = RiL (65)
TB = BΩJ (66)

v1 =
1

Ka
ΩJ (67)

T2 = − 1
Ka

iL (68)

By direct substitution the six elemental equations may be reduced to two state equations
and placed in the standard form:

[
Ω̇J
˙iL

]
=

[
−B/J 1/ (KaJ)

−1/ (KaL) −R/L

] [
ΩJ

iL

]
+

[
0

1/L

]
Vs(t) (69)

If the dynamic study required the computation of the torque to accelerate the inertia
TJ , the motor current iL, and the viscous bearing torque TB as output variables, the
elemental and constraint equations may be used to write a set of three output equations
in terms of the state and input variables:

TJ = −T2 − TB =
1

Ka
iL −BΩJ (70)

iL = iL (71)
TB = BΩJ . (72)

In output matrix form these are written:



TJ

iL
TB


 =



−B 1/Ka

0 1
B 0




[
ΩJ

iL

]
+




0
0
0


 Vs(t) (73)

Example

A sketch of a hydraulically actuated mechanical system and its linear graph model are
shown in Fig. 22. The hydraulic actuator is a gyrator and divides the system into the
fluid and mechanical domains. On each side a separate reference node is established.
The system graph has B = 7 branches and N = 5 nodes. The gyrator, representing
the hydraulic ram, divides the overall graph into two distinct connected graphs Nd = 2.
The normal tree for the system has BT = 5− 2 = 3 branches: the pressure source, the
mechanical mass and the fluid resistor are shown in Fig. 22c. The two gyrator branches,
together with the spring and mechanical damper form the links of the tree.

From the normal tree shown in Fig. 22c:

Primary variables: Ps(t), PR, vm, FK , FB, Q1, F2

Secondary variables: Qs(t), QR, Fm, vK , vB, P1, v2

System order: 2
State variables: vm, FK
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Figure 22: Hydraulic actuator system, its linear graph and normal tree.

The B − S = 6 elemental equations written in terms of primary variables are:

dvm

dt
=

1
m

Fm (74)

dFk

dt
= KvK (75)

PR = RQR (76)
FB = BvB (77)
Q1 = −Av2 (78)
F2 = AP1 (79)

From the normal tree the N −Nd − SA = 2 continuity equations are:

Fm = −F2 − FK − FB (80)
QR = Q1. (81)

and the B −N + Nd − ST = 4 compatibility equations are:

vK = vm (82)
vB = vm (83)
v2 = vm (84)
P1 = Ps − PR (85)

The secondary variables may be eliminated from the elemental equations to yield:

dvm

dt
=

1
m

(F2 − FK − FB) (86)

dFk

dt
= KFK (87)

PR = RQ1 (88)
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FB = Bvm (89)
Q1 = −Avm (90)
F2 = A (Ps − PR) (91)

By direct substitution, the six elemental equations may be reduced to two state equa-
tions:

dvm

dt
=

1
m

(
−

(
A2R + B

)
vm − Fk −APs

)
(92)

dFk

dt
= Kvm (93)

with the matrix form
[

˙vm
˙FK

]
=

[
− (

A2R + B
)
/m −1/m

K 0

] [
vm

FK

]
+

[
−A/m

0

]
Ps(t) (94)
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