2.672: Writing a technical paper

Prof. Wai Cheng
Department of Mechanical Engineering, MIT
Elements of a technical paper

• Title
• Abstract
• Introduction
• Theoretical background
• Apparatus and procedure
• Results and discussion
• Conclusions
• Nomenclature (optional)
• References
• Appendices (optional)
2.672 writing

• Individual reporting
 – You share ideas, data and results with your group members. You need to write your own project report though.

• Writing style
 ➢ Avoid subjective comments, and use of personal pronouns; use passive voice instead
 ➢ Write directly, avoid words that are not useful such as:
 ▪ “In order to”
 ▪ “the purpose of this experiment is to”
 ➢ No. of significant figures in numbers should reflect accuracy of measurement
Paper versus report

• Report
 – Usually for internal use
 – Document details of the project for archival purpose
 ➢ Include details: drawings, computer programs

• Paper
 – For external audience
 – Succinct and to the point
 ➢ Do not need to write about routine details such as calibration procedure etc.
 ➢ Do not put computer program listing in a paper
The title is what draws reader to your work
- Reveal the topic of the paper
- Should include key words about the project

Make the title interesting and attractive
Abstract

• Brief condensation of the paper
 – 150 – 200 words
 – Do not explain why the study is done in the abstract
• What was done?
• How was it done?
• What are the significant results
Introduction

• Introduces subject
 – Background and context
 – Articulate the need for the study
 – Clearly define the problem (purpose of the investigation)
 – Briefly outline overall approach
Theoretical background

(Should use a more meaningful heading than theoretical background)

• Physical explanation of the phenomena involved
• Develop governing equations
 – Assumptions: support them quantitatively
 ➢ e.g. laminar flow — give Re
 – Describe model development
 ➢ Give the key equations only; put details in the appendix
• Connect your theory to your project
 – What theoretical values are to be compared to experimental results?
Apparatus and procedure

• Overview of operation
 – Refer to a schematic to explain the operation
 – Give dimension of apparatus
 ➢ Relationship between the laboratory device and the real device
 – What are being measured?
 ➢ Do not need to give details about transducers if they are common devices

• Experimental matrix
 – What are the variables and what range has been covered?
Results and discussion

Results

• Use figures
• Describe the direct observation first (e.g. pressure vs. time)
 – Point out the features and the physics behind them
• Show how do the results change when you change the variables of the experiment
 – Magnitude (up or down; by how much?)
 – Trends and scaling laws
 ➢ linear, exponential, …
Discussion

• Does theory produce the same features as the observations?

• Plot theoretical values on the same graph as the experimental results
 – Explain the differences

• Make the results (theory and experiment) **useful**
Conclusions

• Summary of your finding
• Pronounce your judgment
 – What are the key parameters?
 – How are the results related to these parameters
 – How good is your model? What does it capture?
 – How does your study contribute to the objective stated in your introduction?
Appendices

• Details that your reader may not need to follow the overall picture but are required to support your work
• Need have narrative to describe any equation, table, or graph in the appendix
Further remark: graphs

- Caption should be short but informative and comprehensive
- Axes should be labeled
 - For dimensional quantities, units are required
 - Use symbols for data points and lines for theoretical values
 - For multiple curves, mark each curve clearly