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We propose the application of volume holography to four-
dimensional (4-D) spatiospectral imaging. The proposed systems
use materials and techniques developed for holographic data
storage and interconnections to capture three-dimensional (3-D)
spatial and one-dimensional (1-D) spectral information about
a remote light source or scatterer. We analyze case studies of
simple architectures using spherical-reference volume holograms
as imaging elements in a fluorescence confocal microscope ar-
rangement and demonstrate the equivalence of the holographic
degeneracies with a slicing operation on the reconstructing in-
coherent source. We develop a general theoretical framework for
the diffraction of random fields from volume holograms and show
that the formulation can be used as an imaging design tool.
Applications and future directions are also discussed.

Keywords—Holography, microscopy, optical imaging, tomog-
raphy.

I. INTRODUCTION

The introduction of volume holography in a seminal
paper by van Heerden [1] was soon followed by the
discovery of appropriate materials through the effect of
“optical damage” [2], which later became known as the
photorefractive effect [3]. Since then, volume holograms
have been popular in a number of subareas of optical
information processing, namely data storage [1], [4]–[6],
interconnects and artificial neural networks [7], [8], and
communications [9]–[13]. To date, commercial applications
of thick volume holograms are for spectral filtering [14]
and three-dimensional (3-D) storage devices. In this paper
we introduce a novel application of volume holography to
multidimensional imaging.
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Optical imaging is in the midst of a revolutionary shift
from analog to digital systems. The most apparent aspects
of this shift are the ubiquitous availability of digitized
images and the use of digital networks to transmit images.
Deeper aspects of the shift to digital techniques are only be-
ginning to be explored, however. For example, the physical
analogy between the detected field and the perceived object
which is the basis of classical imaging need not be present
in a digital system. In classical systems, a two-dimensional
(2-D) focal plane pattern is used to represent the object in
spite of the fact that the object is usually 3D. The goal in
building a classical system is to make the field distribution
on the sensor plane appear as similar as possible to the
object viewed from the same perspective. Digital systems,
in contrast, use sensor data to reconstruct the object in its
native 3-D space. Since the digital system does not directly
display sensor data, sensor data need not look like the ob-
ject. The goal in designing a digital system is to maximize
the detected object information so as to allow an accurate
object model to be constructed. In many cases, it may not be
possible to obtain simultaneously information on all object
features. For example, capture of polarization data may pre-
clude capture of spectral data or reduce spatial resolution,
capture of temporal variations may limit 3-D resolution,
etc. In view of these tradeoffs, digital systems are designed
to optimize the capture of specific features of interest.

Imaging system design has been the primary subject of
physical optics for millenia and the state of development
of these systems is very high. While volume holograms
can replicate the function of imaging system components,
such as lenses, beam splitters, and spatial or spectral filters,
holograms do not out perform conventional components for
these functions. Volume holography as a tool is extremely
attractive in emerging digital imaging systems, however,
because volume holograms have more design degrees of
freedom per unit system aperture than any other optical
component. Design complexity allows volume holograms
to extract more sophisticated features from fields, enabling
sensor design to target features for object reconstruction.
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Volume holograms for complex field transformation and
feature extraction have been highly developed in the context
of holographic storage and interconnection. Digital data
storage, where each stored hologram corresponds to a
page of information, is the most straighforward applica-
tion. Despite this apparent simplicity, system geometry is
extremely important to the capacity and function of data
storage. On the next level of complexity, artificial neural
networks have used holographic mappings for dendritic
interconnections. Before the spectacular improvement of
very large scale integration (VLSI) technology in the 1990’s
[15], [16], volume holograms were considered as a primary
contender for the efficient storage and implementation of
the massive interconnections needed for complex pattern
recognition tasks. Many of the design considerations from
data storage and neural net systems can be applied to
the design of holograms for imaging applications. As will
become evident in the remainder of the paper, some of the
fundamental properties of holographic storage techniques,
in particular the spatial selectivity and degeneracies of
spherical reference volume holograms [17], can be applied
verbatim to imaging. Even though the architectures we
study here are different than the disk geometry of [17],
the similarity simplifies our intuitive understanding of the
problem.

The structure of the paper is as follows. Section II
provides an extensive introduction to holographic storage
and some of the issues arising when building a volume
holographic system. In Section III we touch upon the
primary issues arising in computational imaging systems
and show as a simple example that the performance of the
common fluorescence microscope arrangement improves
when the collector lens is replaced by a volume hologram.
In Section IV we analyze three simple implementations of a
particular transformation, a matched filter to a point source,
using volume holograms. We show that, when viewed on
a flat camera detector, the diffracted field reconstructs a
color-variant slice of the originating incoherent source, and
we derive the slice shape as a function of the recording
and reconstructing geometries. In Section V we develop
a general procedure, formally equivalent to the Hopkins
integral, for the calculation of diffraction of random optical
fields from volume holograms. Our formulation leads to a
design process, based on coherent mode decomposition, for
constructing a volume hologram capable of shaping the co-
herence properties of the optical field arbitrarily, within the
allowable degrees of freedom. We conclude in Section VI
by discussing design considerations for multidimensional
imaging systems, their markets, and applications.

II. HOLOGRAPHIC STORAGE

Holographic storage is motivated by high overall data
capacity and parallel access. It was introduced by van
Heerden [1], who first noted the similarity between X-ray
diffraction from periodic crystal lattices and light diffraction
from volume gratings and proposed utilizing this effect to
superimpose and selectively retrieve multiple holograms

in the same material volume, each hologram storing one
page of information. The maximum number of resolvable
voxels that can be stored inside a volumeat wavelength

is This corresponds to an order of 10 Tbits/cm
for green light. The parallelism, or the maximum number
of resolvable pixels that can fit in a single page (i.e.,
an individual hologram), is bounded above roughly by

For green light, this is 0.4 Gbits/cm with a
data rate of several Gbits/s if the page size is actually 1 cm

1 cm, and it takes no more than a few milliseconds to
integrate each individual hologram on the detector. Neither
of these upper bounds has ever been achieved in practice
because of material and device limitations.

A typical holographic storage system is shown in Fig. 1.
The hologram is recorded by illuminating a photosensitive
material with the interference pattern formed by two coher-
ent light beams, the reference and signal. The signal beam
contains the information to be stored in the form of trans-
verse phase or amplitude modulation of the beam profile,
imposed by a spatial light modulator (SLM). The reference
beam contains no information, except the “identity” of
the hologram. For example, in the most common form of
holographic storage, called “angle-multiplexing” [18]–[20],
which is depicted in Fig. 1, the reference beam for theth
hologram is a plane wave incident at angle After the
exposure is complete, each hologram ideally contributes
an equal amount of spatial modulation to the refractive
index of the material. The th hologram is then accessed
selectively by illuminating the exposed material with the
corresponding plane wave at angle If the original
recording reference beams were appropriately spaced, then
the diffracted light contains significant reconstruction from
the th hologram only. The remaining holograms are
Bragg mismatched, i.e., they are read out by the incident
beam, but their reconstructions, when integrated over the
entire volume of the material, cancel out to zero. In the
common configuration of Fig. 1, the angular separation
between adjacent holograms must be equal, approximately,
to an integral multiple of

(1)

This quantity is known as angle Bragg selectivity. Since
is proportional to the selectivity improves by using
shorter wavelengths or thicker materials. It is important
to note that the multiplexed holograms share the entire
volume of the recording material; therefore, holographic
storage is fundamentally different than layered volume
storage methods, such as the digital video disk (DVD) and
two-photon storage [21]. One might think of the process
of Bragg matching a single hologram in the presence
of multiple holograms sharing the medium as similar to
tuning a receiver to a radio station; the matching angle
corresponds to the resonance frequency of the receiver, and
the Bragg separation corresponds to the quality factor

that determines the receiver bandwidth.
Angle multiplexing has been by far the most popu-

lar technique in experimental demonstrations. The angular
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Fig. 1. A common holographic memory architecture. Themth hologram is recorded by the
interference of the beams from the “reference” (incident at�m) and “signal” arms (incident at
angle�). The information to be stored is modulated on the signal wavefront by the SLM. When
the hologram is illuminated by a plane wave incident at angle�m from the reference arm, the
mth stored page is diffracted into the “reconstruction” arm and is focused onto the camera. This
scheme is called “angle multiplexing.”

deflection required to record and access different holo-
grams has been implemented by electromechanical actua-
tion of off-the-shelf commercial mirrors [5], [6], [22]–[24],
magnetic actuation of micromachined mirror flaps [25],
acoustooptic deflection [26], [27], and liquid-crystal-based
electrooptic deflection [28], [29].

Alternative multiplexing methods have also been devised.
For example, using a plane wave reference beam, the
reconstruction is also sensitive to the wavelength of the
incident beam [18], [19], [30], [31]. With widely tunable
visible and near-IR lasers becoming more common, com-
pact, long lived, and affordable, the elimination of the need
for an angular deflector makes wavelength multiplexing a
more attractive choice. Another method without mechanical
addressing requirement is phase-code multiplexing [32]
where the reference beams are implemented as a set of
orthogonal codes and addressed using a phase SLM. Even
simpler is the implementation of shift multiplexing, which
requires a reference beam that is either a collection of
plane waves with a regular relative angle displacement
[33] or which is a spherical wave [17]. In both cases,
individual holograms are accessed by relative translation
between the reference and the recording medium. The
required shift between adjacent holograms is typically of the
order of a few micrometers. The shift could be implemented
acoustooptically, but mechanical translation is simpler and
well characterized because of the popularity of optical
storage disks [34]. Therefore, the latter has been the method
of choice in high-capacity experiments [35], [36]. The
properties of spherical reference volume holograms will be
revisited in detail in Section IV.

The techniques mentioned so far make use of Bragg mis-
match to multiplex holograms. Further increase in capacity
may be obtained by synthetically increasing the aperture of
the hologram using the motion of the reference beam. In the
holographic storage jargon, these techniques are referred
to as “fractal” [37]. Recent implementations include the

“peristrophic” multiplexing method [38] and the hybrid
angle-wavelength multiplexing method [39]. The aperture
increase is effected by use of the degeneracy effects that
will be derived for some specific geometries, but in quite
a different context, in Section IV-C.

With a wide choice of well-understood multiplexing
techniques available, the next critical system issue is the
material [40], which is determined by the application.
We consider photorefractive and photopolymer materials
only, because so far they have been the most popular in
experiments of erasable and permanent holographic storage,
respectively. A complete review of available holographic
storage materials [41] is outside the scope of this paper.

Photorefractive crystals, such as Fe-doped LiNbO
Sr Ba NbO (SBN: and BaTiO were the first
materials to be used for holographic storage [3]. During
recording, the refractive index change occurs via the
electrooptic effect after a spatially varying space-charge
field is established in the crystal from the diffusion or
drift of photo-excited charges away from the illuminated
regions [42]–[44]. The space-charge field sustains itself
after removal of the recording beams but decays because
of thermal electronic excitation in the dark, or uniform
photo-excitation during hologram readout. Decay occurs
also as a result of superimposing more holograms in the
same location of the material. As a result of the erasure
of existing holograms when new holograms are recorded,
the dynamic range of the material is not fully utilized,
and the diffraction efficiency (defined as the portion of
the reference beam power diffracted into the hologram) of

equal-strength holograms is [45], [46]

(2)

The parameter (pronounced “M-number”) depends
highly on material parameters, such as absorption coef-
ficient, doping levels, recombination lifetimes, etc., but
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also on the beam profiles and intensities and stability of
the experimental arrangement; it is, therefore, a system
parameter [46]. Typical photorefractives have or less,
but there are exceptions [22].

Photorefractive holograms are semipermanent, and,
therefore, appropriate for optically erasable, rewritable,
and refreshable random access memory architectures
[5], [22]–[24], [29], [47], or when dynamic holography
is required, e.g., two-wave mixing [48], [49], phase
conjugation [50], [51], optical novelty filters [52], self-
waveguiding [53], [54], etc. Photorefractives are often used
also in applications that require permanent storage, because
the crystal thickness can be large (several millimeters
or centimeters), thus providing high capacity. A number
of techniques exist for recording permanent holograms
in photorefractives and include thermal fixing [55]–[60],
electrical fixing [61]–[65], two-lambda readout [66]–[70],
and two-photon recording [71]–[75]. A comprehensive
review of nonvolatile photorefractive storage is given in
[76].

A different class of holographic recording mechanisms
is based on photochemical changes initiated by exposure
to the recording beams. The most common example is
photoinduced polymerization in the DuPont polymer HRF-
150 [77]–[79], where recording occurs as refractive index
modulation because of density changes in the exposed
areas; it is permanent and does not significantly degrade
over time. Despite the different recording mechanism, the
diffraction efficiency as a function of number of superim-
posed holograms still follows the rule (2). The HRF-150
has been demonstrated to have approximately and
has been used successfully in a number of high-capacity
demonstrations of holographic storage [35], [80], [81].

The selection of material and multiplexing technique
depends on the application. Storage in photopolymers is
permanent, hence they target read-only (ROM) or write-
once-read-many (WORM) storage applications. Unfortu-
nately, the thickness of photopolymer films is limited by
considerations of mechanical stability and optical quality.
The highest capacity ever achieved in the DuPont polymer
is 12 bits/ m [35] using shift multiplexing with a 100 m
thick film. This surface density is higher than the DVD-
ROM by a factor of two. Recently, samples of thickness up
to 5 mm were fabricated using a poly(methyl-methacrylate)
(PMMA) polymer matrix to host the photosensitive material
phenanthrenequinone (PQ) [82]–[84]. Theoretical calcula-
tions [17], [85] show that the achievable density at 5 mm
hologram thickness is as high as 200 bits/m Therefore,
PQ-doped PMMA seems promising as a replacement to the
DuPont HRF-150 polymer and nonvolatile photorefractive
storage for permanent high-density holographic memories.

Other systems issues that are important for holographic
storage are page-oriented error correction [86]–[88] and
channel modulation [89], [90], pixel matching [91] (i.e.,
minimizing aberration distortion by using unit magnifi-
cation in the optical system between the SLM and the
detector), and the location of the hologram with respect to
the imaging system [92] (i.e., whether the hologram should

Fig. 2. Operation of the angle-multiplexed holographic memory
of Fig. 1 in correlator mode.

be located on the focal or pupil plane of the imaging system
that maps the SLM on the detector plane). A complete
review of these issues is outside the scope of the present
paper.

The function of volume holograms as correlators [93]
has been traditionally an important application of holo-
graphic memories oriented toward optical pattern recog-
nition [94]–[96]. Suppose patterns
are stored in a holographic memory. If the memory is
illuminated by a new pattern along the path of the signal
beam, and a Fourier-transforming lens is placed on the
continuation reference path (see Fig. 2), then at the focal
plane one obtains the correlations of the novel
pattern with all the stored patterns at once. The parallel
correlation operation is obtained at the expense of losing
shift invariance in one dimension at the output plane. This
mode of operation of a holographic memory has been
successfully used in a number of applications [97]–[99]. In
Sections IV and V we will show that the volume hologram
correlates its internal modes with the input field. This
function is useful as an imaging operation.

III. 3-D I MAGING AND VOLUME HOLOGRAPHY

A. Types of Imaging Systems

An optical imaging system transfers information about
an object to the user, using light as information carrier.
The amount and quality of the transmitted information is
determined by the propagation properties of light. Free
space propagation has the effect of delocalizing the object
features, “blurring” the image. Optical elements, such as
lenses, are used to compensate propagation and recover the
object features locally or bring the image “in focus.”

Most imaging instruments assume planar objects, i.e.,
objects that can be described by a two-variable function
defined on a surface transverse to the optical axis (see
Fig. 3). The optical system performs an analog linear
transformation on the transverse field intensity distribution,
and the image appears at the final detection stage. The
imaging task is more demanding for 3-D objects, because
it requires compensation of light propagation effects in
three dimensions. Unfortunately optical instruments are
geared to handle planar rather than volumetric objects,
and optical detectors are also typically planar (2D). Three-
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(a)

(b)

Fig. 3. (a) A planar imaging geometry. (b) A volume imaging
geometry. The dashed lens indicates that the imaging system is
usually more complicated than a single lens.

dimensional imaging requires the acquisition of sets of
lower-dimensional intensity measurements (2-D or point
measurements) and the subsequent formation of the image
from these measurements. One selection for the intermedi-
ate measurements may be 2-D images of slices of the 3-D
object. The imaging system is then called “tomographic.”
The content of the intermediate measurements, however,
may not resemble the object at all. Then, a more com-
plicated transformation is required to recover the image.
This class of “computational imaging” systems is quickly
becoming more popular as the available digital processing
power increases.

Three-dimensional optical imaging schemes may be clas-
sified into five broad categories: scanned systems; scene
analysis systems; projective systems; interferometric sys-
tems; and modal systems. Scanned systems include laser
spot scanners, confocal microscopes, and laser fluorescence
microscopes. These systems are effective but slow, since
the volume data are acquired one spot at a time. Scene
analysis systems combine expert systems and geometry to
computationally reconstruct objects; they require substantial
prior object knowledge. Projective systems combine ray
optics and inverse-Radon or similar transforms to recon-
struct objects and work best with high depth of field optical
components. Interferometric systems include holographic
schemes and coherence tomography; they are very powerful
and general but are subject to noise concerns. Modal sys-
tems take the most general approach, detecting the state of
all optical modes and attempting a computational inversion.
All five imaging system classes require new approaches to

Fig. 4. Principle of the confocal microscope arrangement. In
experimental configurations, the sample is sometimes: 1) reflective,
when the system is folded, sharing the same lens as objective
and collector, or 2) fluorescent, when the radiation emitted by the
sample is at a longer wavelength and the illuminating radiation is
blocked by a color filter.

optical design and benefit from spatial and spectral filtering.
Volume holographic elements can substantially improve any
type of imaging system. In this paper we will illustrate
this potential for the cases of confocal microscopy, tomog-
raphy, and coherence imaging. The following paragraphs
describe the traditional approaches to confocal microscopy
and coherence imaging in more detail.

The confocal microscope, invented by Minsky [100],
operates by the lowest dimensional measurements possible,
i.e., point measurements. A confocal microscope is sketched
schematically in Fig. 4. It constructs a 3-D image by
scanning the volume of the specimen and obtaining the
emitted intensity values one point at a time. The geometry
of the optical system is such that light emitted locally
from a very small portion of the object only is allowed
to reach the detector. The rest of the light is rejected
by the aperture at the detector pupil. The proportional
light contribution to a single measurement as function of
object coordinates is equivalent to the 3-D point-spread
function (PSF) of the system; it can be calculated accurately
under various aberration conditions using Fourier optics
[101], [102]. Confocal microscopy has been implemented
in many different variants for improved light efficiency or
resolution, e.g., differential interference [103], fluorescence
[104], two-photon [105], etc.; it has been spectacularly
successful, primarily in various applications of biological
and biomedical imaging.

Coherence imaging (Fig. 5) is an example of compu-
tational imaging that relies on global, rather than local,
measurements. It is based on a fundamental result, derived
independently by van Cittert and Zernicke [106], [107],
which states that the degree of statistical correlation of
the optical field in the far zone, expressed as a complex
function over the exit pupil of the imaging system, is
the Fourier transform of the object intensity distribution.
Therefore, the object can be recovered by measuring the
coherence function through interferometry and then inverse-
Fourier transforming the result. The application of the van
Cittert–Zernicke theorem in the radio frequency spectral
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Fig. 5. A system for implementing coherence imaging with a
“rotational shear interferometer” (after [116]). The roof prisms
rotate the image antisymmetrically about the two axes, and the
two versions are interfered at the camera plane.

region is the basis of radio astronomy [108], which yields
by far the most accurate images of the most remote cosmic
objects. The most common formulation of the theorem
relates the mutual coherence in a plane at infinity to a 2-D
source intensity distribution, but extentions to 3-D sources
have been derived by various authors [109]–[112]. The far-
field version of the extended van Cittert–Zernicke theorem
was recently implemented experimentally [113]–[115]. A
full generalization of the theorem has also been developed
and experimentally implemented to allow Fresnel zone
reconstruction in projective coordinates [116].

In either of these systems the detected intensity is shaped
by the response of the imaging elements (in the confocal
microscope, the intensity measurement results from the field
received at a single point, whereas in coherence imaging
the measured intensity is the result of interference between
two or more optical paths). A volume hologram is a more
general design tool. One may think of it as an element
that modifies an optical beam continuously along an entire
volume. As such, it can be designed to perform spatial
filtering operations similar to the confocal microscope, but
it is more sophisticated because of the additional third
degree of freedom, as we show in an example in Section III-
C. An even more extended operation available by the
volume hologram is a spatiospectral mapping between
points in the object and points on the detector. As we will
see in Section IV-C, the so-called “degeneracy” properties
[37] of the volume hologram provide this mapping; the
recording geometry is the tool that allows the designer to
shape the map structure. The most general usage of volume
holograms for imaging is by way of mixing the modes of
the field generated by the object with the modes of the
hologram through the effect of volume diffraction. Whereas
the previous examples can be classified as subcategories
of modal imaging, volume holography allows arbitrary
shaping the coherence properties of the scattered field. The
formal development of this design technique is given in
Section V.

B. Imaging System Design

The impact of design choices in individual optical com-
ponents on system performance is a critical issue for 3-D

imaging system design. Lens behavior, for example, has
been well characterized in a large variety of imaging
conditions, and lens design is an art in itself. Confocal
microscopy, along with a large number of high-performance
imaging techniques, make good use of advances in lens de-
sign. On the other hand, in lensless imaging systems (such
as coherence imaging, mentioned above), one tries to get
away from the complexity of lens design by using simpler
elements (mirrors, prisms) to form interference patterns, and
subsequently one uses the computational power of digital
computers to apply transformations (Fourier transforms,
Fresnel transforms, and possibly nonlinearities) on the
detected image intensity in order to recover the 3-D object.
With the exception of digital computations, the design of all
other imaging system elements is constrained by machining
accuracy limitations. Digital transformations themselves are
limited by the requirement of reasonable computation time.
Therefore, part of the imaging design problem is to achieve
a successful balance in splitting the imaging transformations
to analog ones, performed by the optical elements, and
digital ones, performed by computers, according to the
individual capabilities of each component.

A class of optical elements that allow considerable flex-
ibility in their optical response is, of course, holograms. A
hologram is determined either by the profiles of the two op-
tical beams that interfere to record it or can be fabricated by
etching a waveform on a suitable material (typically glass).
In either case, several sophisticated devices are available
for determining the hologram response. For example, in
the former case, SLM technology allows spatial amplitude
and phase modulation of optical beams to resolution down
to 10 m; in the latter, photolithography and electron beam
patterning have been used to generate very sophisticated
diffractive optical elements for communications, display,
and other applications. Holograms have not been very
popular as optical elements in practical imaging systems.
A notable exception is holographic interferometry [117]
and two-wavelength interferometry [118], [119], where
the hologram does not function as a fixed imaging ele-
ment, but rather as a sophisticated detector that captures
phase properties of the object. Bertero and collaborators
[120]–[126] have proposed a method of superresolving
confocal microscopy using diffractive elements calculated
based on singular system theory.

We propose to use volume holograms as optical imaging
elements for one main reason: a volume element provides
a larger number of degrees of freedom in defining the
optical response, compared to a surface element (e.g., a thin
hologram) of the same aperture. This is intuitively obvious
from dimensional arguments and was proven formally in
[127] and [128] using the modal properties of electro-
magnetic fields. We will not repeat the formal arguments
here but point out the desirable and undesirable features
of volume holography that should be taken into account
in the design process. The main price to pay for the
advanced design flexibility is that the control problem of
defining the hologram response (i.e., “programming” the
volume hologram) becomes considerably more difficult and
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is accomplished at the expense of diffraction efficiency
[128]. Other considerations that follow from the description
of Section II are:

1) volume holography provides enormous storage capac-
ity; therefore, a large number of degrees of freedom
is available to the designer for shaping the optical
response and improving the quality of the image;

2) the capacity goal should be achieved by using as
small a number of holograms as possible in order
to maintain high individual diffraction efficiency for
each hologram;

3) the recording of volume holograms is an expensive,
material-limited process that should not be performed
in real time; it is better, therefore, to use volume holo-
grams as fixed elements that have been predesigned,
fabricated in the factory, and delivered to the user,
rather than as dynamic elements modifiable in real
time.

What function should the volume hologram perform
inside an optical imaging system? Unlike other optical
elements, the range of possible responses by volume holo-
grams allows them to perform several functions. We con-
clude this section by giving an example of a volume
hologram as part of a confocal imaging system. The more
complicated nature of the hologram’s response is fully de-
veloped in Section IV-C for several recording geometries.
In these cases, the volume hologram acts as a local imaging
system by isolating specific light contributions arising from
spatial and spectral bands of the object and mapping them
onto a 2-D detector. At the end of Section V we will see
that a volume hologram may also be designed to act as a
global imaging instrument that forms correlations between
the light modes emitted (or scattered) by the object and the
modes of the hologram.

C. Example: Confocal Imaging with a
Volume Holographic Collector

Consider again the confocal imaging system of Fig. 4.
The most common performance measure of such a system
is “resolution”; i.e., the size of the minimum resolvable
element within the object volume. This is equivalent to
the volume where the 3-D-PSF of the confocal imaging
takes significant values. Ideally, the 3-D PSF is afunction
and the resolution is infinite, but in real-life systems it is
nonzero over a finite volume. The confocal arrangement
achieves a tight 3-D PSF by: 1) illuminating the point of
interest inside the object (the target) by a tightly focused
beam, produced by the objective lens, and 2) re-imaging
through the collector lens the radiation from the target onto
a small pinhole aperture in front of the detector. Thus, point
radiators other than the target are doubly inhibited: 1) they
are illuminated by an extended low-intensity beam, whereas
the target is illuminated by the high-intensity beam waist
and 2) the radiation they produce is rejected by the 3-D PSF
of the collector because they are away from the focal point.

(a)

(b)

Fig. 6. Confocal imaging arrangement with the collector lens
replaced by a volume hologram and a Fourier transforming lens:
(a) geometry for recording the volume hologram and (b) confocal
imaging arrangement.

Consider now the modified confocal imaging system of
Fig. 6(b), where the collector has been replaced by a vol-
ume hologram and a Fourier-transforming lens. The volume
hologram has been recorded by the interference of a spheri-
cal wave originating from the intended target location, and a
plane wave oriented normally with respect to the optic axis
of the spherical wave, as shown in Fig. 6(a). This recording
arrangement is known as “90geometry,” and has been
popular in a number of holographic storage demonstrations
[5], [6], [22]–[24]. In our imaging configuration [Fig. 6(b)],
the volume hologram captures the radiation emitted by
the object after illumination by the focused input beam
produced by the objective. The diffracted light propagates
in the direction shown in Fig. 6(b) and is then captured and
Fourier transformed by the lens. The pinhole-sized detector
is placed at the focal point of the lens, i.e., it captures the
dc component of the diffracted field.

Formally, the volume hologramlens arrangement forms
the correlation between the field emitted by the object and
the original signal beam [the spherical wave of Fig. 6(a)].
Radiation emitted from the target position at the recording
wavelength is identical to the recording signal and is recon-
structed on the detector. Radiation emitted from different
positions and at different wavelengths (if the object happens
to be polychromatic) does not correlate well with the
recording signal and is not reconstructed. The calculation of
the diffracted field as a function of the reconstructing object
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(a) (b)

(c) (d)

Fig. 7. Numerical comparison of fluorescence confocal imaging with a lens collector and volume
holographic collector. For simplicity, the fluorescence wavelength is taken to be equal to the probe
wavelength. (a) Geometry used in the simulation. Each plane is modeled as a 100� 100 grid of
incoherent radiators at the same wavelength�: (b) Shape of the original object. (c) Fluorescence
confocal reconstruction using a lens collector of aperture radius 1500�; located 2500� from the plane
of the letter “M.” (d) Fluorescence confocal reconstruction using a volume holographic collector
with aperture radius 1500�; thickness 3000�; with its center located 2500� from the plane of
the letter “M.”

for this geometry is given in detail in Section IV-B. There
we will find out that some parts of the uncorrelated radiation
actually are reconstructed, but not at the focal point of
the lens. Detecting these reconstructions in an organized
way allows the performing of interesting slicing operations
on the object. These will be explained in Section IV-C.
For the purposes of this section, it suffices to note that, in
isolating the radiation emanating from the target point and
rejecting the rest, the volume holographic collector is more
efficient than an equivalent lens collector. The reason is
understood immediately upon comparing the 3-D PSF’s of
the confocal arrangement with a lens collector as opposed to
a volume hologram. The 3-D-PSF calculation is performed
using volume diffraction theory in Section IV-B. There, it
is shown that the width of the main lobe is the same in both

cases; however, the sidelobes are significantly suppressed
in the case of the volume holographic collector.

A numerical example demonstrating the importance of
the side-lobes is given in Fig. 7. In this example, we nu-
merically reconstructed a fluorescent 3-D incoherent object
with the two cases of confocal microscope with a regular
lens and volume holographic collector. The resolution was
close to the borderline resolution allowed by the numerical
aperture of the lens collector. From the reconstructions
we see that the lens collector accumulates noise from
power diffracted by the sidelobes; this is absent from
the volume holographic reconstruction. The signal-to-noise
ratios, computed as the quadratic error between object
and image normalized to the total image intensity, were

1500 and 3500, respectively, for the lens and volume
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Fig. 8. Schematic of a generic volume diffraction geometry. The
probe fieldEp(r) and index modulation��(r) are expressed in
thexyz coordinate system. For notational clarity, we use a different
x0y0z0 coordinate system for the diffracted fieldEd(r):

holographic collector. This improvement is not dramatic,
but the design can be combined with matched filtering
similar to Bertero’s decomposition method [120]–[126],
yielding even better results. This last step is not described
in this paper.

IV. DIFFRACTION PROPERTIES OFVOLUME

HOLOGRAMS WITH SPHERICAL REFERENCE

As we discussed in Section II, in most holographic ma-
terials the recording of a volume hologram is accom-
plished through modulation of the refractive index. This
is expressed as a function of the space coordinate

for where is the volume occupied by
the holographic material. A generalized version of the
volume diffraction geometry, valid for all the calculations
of this section, is given in Fig. 8. When the hologram is
illuminated by a probe field the diffracted field

is found as the solution to Maxwell’s equations
in an inhomogeneous medium, with refractive index as
given above. The solution is simplified if we assume that
the magnitude of the modulation is much smaller than the
unmodulated refractive index

(3)

because the weak diffraction approximation (also known
as “Born’s approximation”) can then be applied. The dif-
fracted field is given by

(4)

where is the wavenumber and the last term in the
integrand is recognized as the scalar Green’s function for
free space. The derivation of (4) from Maxwell’s equations
is beyond the scope of this paper.

(a) (b)

Fig. 9. Simplified holographic recording geometries considered
in this paper: (a) reflection geometry and (b) 90� geometry. The
reference and probe beams are always spherical waves. We cover
both cases when the signal is either spherical wave or a plane wave
for (a) in Sections IV-A and IV-C and the case of plane wave signal
only for (b) in Sections IV-B and IV-C. The reconstructed beam
depends on the relative position and wavelength of the reference
and probe beams, the nature of the signal beam, and the shape of
the hologram.

Equation (4) has a simple interpretation. Assume that
the volume grating is composed of infinitesimal scatterers,
the strength of the scatterer located at being

Then the diffracted field is the coherent summation
of the fields emitted by all the scatterers when they are
excited by the incident field Naturally, this picture
omits higher order scattering, i.e., fields generated when the
field scattered from one infinitesimal scatterer reaches other
infinitesimal scatterers. This omission, though, is consistent
with the weak scattering approximation, which says that
these higher order effects are even weaker and, therefore,
negligible.

Expression (4) is computationally efficient when spher-
ical waves are involved in the recording of the hologram,
as we will see in the next two sections. For other types of
fields, a representation of the diffracted field and the grating
in wave-vector space works better but is beyond the scope
of this paper. For a more complete treatment, the reader is
referred to [129].

We will be examining two volume holographic ge-
ometries, shown in Fig. 9. In the “reflection geometry”
[Fig. 9(a)] the reference and signal beams are incident
on two opposite faces of the holographic material and
(approximately) counterpropagating. Upon reconstruction,
the probe beam is incident in the direction of the reference
and the diffracted beam is generated as extension of the
signal, i.e., it is counterpropagating, on the same side
of the medium as the probe beam. A beam splitter is
used to separate the reconstruction from the probe. In
the “90 geometry” [Fig. 9(b)] the reference and signal
beam are incident on two normal faces of a cube-like
recording medium. Again, the probe is incident from the
same direction as the reference, and the reconstruction
appears as a continuation of the signal, but no beam splitter
is required in this geometry.

In the next two sections, we derive the basic formulas
that give the diffracted field as function of the output
coordinates the recording beams and the geometry of the
hologram, for the reflection and 90geometry, respectively.
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Fig. 10. Schematic of the reflection geometry with spherical
wave reference and plane wave signal beams.

In Section IV-C we solve for the locus of probe points and
wavelengths that generate maximum reconstructed intensity
in the (arbitrarily defined) output plane. The resulting
construction is called the “degeneracy surface” of the
volume hologram and is important because it specifies the
portion of the object that is “visible” by the hologram for
imaging purposes.

A. Reflection Holograms

First we consider the geometry of Fig. 10, with aplane
wavesignal beam. The reference beam used for recording
is a spherical wave at wavelength produced by a point
source at We express this wave in
the paraxial approximation, as

(5)

Note that we have neglected a term of the form
because it varies with much slower than the exponential
term. Such slowly varying terms will be neglected from
here on. The signal beam is a plane wave propagating at
angle with respect to the axis. In the paraxial
approximation, it is expressed as

(6)

The modulation of the material refractive index resulting
from exposure to beams given by

(7)

Out of the four terms in the interference pattern, we will in-
sert only in the volume diffraction equation (4)
for the remainder of this section. The remaining three terms
are Bragg mismatched and do not diffract significantly.

The probe field is a spherical wave at wavelength
emanating at The expression for
the probe field is

(8)

To find the diffracted field at the detector coordinates
(located near the focus of the signal beam) we will use
Born’s diffraction formula (4). We simplify by assuming
that the holographic medium is disk shaped with radius

in the plane, and thickness along the direction,
and making the paraxial approximation, i.e., assume that

is smaller than any longitudinal distance that the fields
propagate. We then obtain

circ rect

(9)

The field reaching the detector is obtained after a Fourier-
transforming operation applied by the lens on i.e.,

(10)

where is the focal length of the lens and constant phase
factors have been omitted. The limits of integration in (10)
are taken to be infinite by assuming that the aperture of
the Fourier transforming lens is larger than the effective
aperture imposed on the diffracted field by the transverse
size of the volume hologram. In other words, we assume
that the volume hologram defines the aperture of the system.
Under this condition, we can substitute (9) into (10) and
perform the integrations right away, obtaining

circ

rect (11)

where the coefficients are given
by

(12)

(13)

(14)

(15)
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To simplify the integral (11), we use the following cylin-
drical coordinates:

(16)

with the inverse transformations given by

(17)

where the sign of the inverse tangent is taken to conform
with the quadrant of and respectively.
Equation (11) then becomes

(18)

The result for the innermost integral is well known, ex-
pressed in terms of the zero-order Bessel function of the
first kind as

(19)

The next-level integral occurs in the calculation of the 3-D
PSF of a lens near focus, and is written as

(20)

where the real and imaginary parts of the function
are expressed in terms of the Lommel functions. For
more details, the reader may consult [130, Section 8.8, pp.
435–449]. In terms of the function, the diffracted field
at the detector is expressed as

(21)

The last integral is calculated numerically. Some properties
of the volume hologram are now apparent qualitatively.

1) If the hologram is reconstructed at the recording
wavelength with a probe source at the
same location as the reference source , and
the detector is placed at the maximum of the Fourier
transform of the signal then
all the exponents in (18) vanish, and the reconstructed
power is maximum. This condition is known as Bragg
matching.

2) If either the reconstruction wavelength or the probe
location change, the detector point

does not receive maximum power anymore. If the
power drops uniformly over the entire detector plane,
we say that the hologram is Bragg mismatched. When

and satisfy certain conditions, though, then

Fig. 11. Contour plot of the diffracted intensity measured by a
detector at the focal pointx0=F = y0=F = 0 of the geometry
of Fig. 10, from a point source at positionrp = (xp; 0; zp)
illuminating a volume hologram withR = 750�;L = 1500�: The
same diffraction contour plot is obtained also from the geometries
of Figs. 13 and 14.

significant power is diffracted into some other point
on the detector plane or
The locus of over which this is possible is
the degeneracy surface of the volume hologram. This
effect and how it can be used to extract tomographic
slices of polychromatic volume objects are the topics
of Section IV-C.

3) Since describes the amplitude transmitted from
a quadratic lens also, our result (21) shows that the
diffracted light from the volume hologram is the
coherent superposition of several “lenses” stacked
in the direction. If the probe source is at the
common front focus of all these virtual “lenses,”
then the “lenses” are all in phase and give a strong
reconstruction in the back focal point (Bragg matched
case). If the probe moves around or changes its
color, the “lens” contributions will in general be
out of phase (Bragg-mismatched case), except if the
combination of probe position and wavelength and
observation position are arranged such that the “lens
stack” contributions are again in phase (degeneracy
case).

The diffracted power received by a fixed detector pixel
when are kept fixed and

are allowed to vary are plotted in Fig. 11. This response,
which is common to other recording geometries as well
(see below), should be compared with Fig. 12, which is the
transmitted intensity captured by the detector if the volume
hologram is replaced by a lens of the same aperture as
function of The comparison explains, e.g., why
the volume hologram is more efficient as a collector in
a confocal microscope arrangement (Section III-C).

Now consider the case of a reflection hologram recorded
with a spherical wave signal beam. The geometry is drawn
in Fig. 13. The signal beam is now a spherical wave coun-
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Fig. 12. Contour plot of the transmitted intensity, measured by
a detector at the focal point of a thin quadratic lens with aperture
R = 750�; when illuminated from a point source at position
rp = (xp; 0; zp): This plot is, within scaling factors, the same as
[130, Fig. 8.41] and is provided for comparison with Fig. 11.

terpropagating with respect to the reference, and coming to
a focus at The expression of the
electric field for this wave is

(22)

To find the diffracted field, we start with an expression
similar to (9) with (22) substituted in the refractive index
modulation and proceed as in the
plane-wave signal case, omitting the Fourier-transform step
since there is no lens in the arrangement of Fig. 13. The
result is

(23)

i.e., identical to (21), but with

(24)

(25)

(26)

(27)

Fig. 13. Schematic of the reflection geometry with spherical
wave reference and signal beams.

The plot of diffracted power when and are
fixed, while vary, is virtually identical to that of
Fig. 11 (this can be verified by comparing the expressions
for the coefficients and the changes in the exponents as

change), so it will not be given again. The degeneracy
surface for this geometry will be calculated in Section IV-C
along with the other recording geometries.

B. 90 Geometry Holograms

The 90 geometry differs from the reflection geometry
because the paraxial approximation for the signal and
diffracted beams is made along the rather than the
axis. This leads to quantitatively different expressions in
the diffraction integrals. We will examine in this section
the case of a plane wave signal only, incident at angle

with respect to the axis, as shown in Fig. 14. The
reference and signal beams are

(28)

(29)

For a probe field

(30)

and an observation point near the axis, the diffraction
integral in the paraxial approximation is given as

circ rect

(31)

Performing the Fourier transform in and sub-
sequently the integrals in cylindrical coordinates as in
Section IV-A for the plane wave case, we obtain yet again
a result of the form

(32)

BARBASTATHIS AND BRADY: MULTIDIMENSIONAL TOMOGRAPHIC IMAGING 2109



Fig. 14. Schematic of the 90� geometry with spherical wave
reference and plane wave signal beams.

This time the coefficients are given by

(33)

(34)

(35)

(36)

The change in diffracted power as function of is,
once again, identical to Fig. 11, and will not be given
separately. The degeneracies will be calculated immediately
below.

C. Hologram Degeneracies and Multispectral Tomography

We now turn to the calculation of the hologram de-
generacies, i.e., the conditions for achieving significant
reconstructed power even when the probe field is not a
replica of the reference field. From the diffraction integrals
(21), (23), (32), we can see that the condition for obtaining
significant reconstruction is equivalent to setting the argu-
ments of as well as the varying portion of equal
to zero. If these conditions are not satisfied, the value of
the integral decreases, i.e., Bragg mismatch occurs.

Obviously, in each geometry there are several param-
eters that one may manipulate in order to eliminate the
exponents. The selection depends on the application. We
are interested in the case of a reconstructing field produced
by an extended polychromatic object, and a planar two-
dimensional detector located at the exit plane of the system.
Then, the parametrization of interest is the locus and

wavelength of the point radiators within the object that
produce maximum reconstructed power on a particular pixel
of the detector as a function of the pixel coordinates on the
detector. We will see that this parametrization results, in
each case, in a surface in object space; this is the degeneracy
surface for our chosen planar detector geometry (nonplanar
detector surfaces would yield different degeneracy surfaces
but are hard to come about in practice). The reconstruct-
ing wavelength must vary across the degeneracy surface,
too, for maximum reconstructed power. Thus, the field
diffracted off the volume hologram “isolates” a surface
subset of radiators in space, as well as filters them in color.
This is equivalent to a tomographic slicing operation in
both space and spectral domains. By scanning the volume
hologram in two dimensions, the full four-dimensional (4-
D) reconstruction of the object (in space and color) can
be obtained. We now derive the degeneracy surface shapes
for various holographic recording geometries, in order to
demonstrate the operation of the volume hologram as a
spatiospectral filter.

We begin with the case of a plane wave signal, reflection
geometry hologram, as in the first part of Section IV-A. For
later convenience, we define the parameter To
derive the degeneracy surface, we set all coefficients

equal to zero, at least to first order in
From (12) we obtain

(37)

From (13), and using (37), follows

(38)

whereas (14) and (37) yield

(39)

Substituting into (15) results in the following quadratic
equation in

(40)

where

(41)

(42)

(43)

Therefore, the degeneracy surface is obtained by setting
equal to the root of (40) that is closest to 1 in magnitude and
then substituting in (37)–(39). The result for a particular

2110 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 12, DECEMBER 1999



Fig. 15. Degeneracy surface (space and color) of the reflection recording geometry with a plane
wave signal, computed numerically. The parameters for this plot wererf = (100;�100;�2500)�;
u = 0;�0:3 � x0=F; y0=F � 0:3: In the plot, the blue color corresponds to� = 0:899 and
the purple to� = 1:0:

numerical example is shown in Fig. 15. Two important
points about the surface of Fig. 15 should be noted.

1) The degeneracy surface is not infinitely thin as im-
plied by the drawing but has a finite thickness because
the reconstructed intensity from points and colors
near the surface is not zero but falls off smoothly
according to (21).

2) The diffraction efficiency from points belonging to
the degeneracy surface is not uniformly 1 but falls
off toward the surface edges because higher order
terms in the exponents cause weak Bragg mismatch;
this deviation from true degeneracy is also calculated
by use of (21).

Numerical results for the surface thickness and deviation
from degeneracy are not given here but can be calculated
easily. These remarks also hold for the surfaces computed
later in this section.

The derivation of the degeneracy surfaces for other
recording geometries is similar to the one just described
and will not be given here; only the results will be quoted.

For the spherical wave signal reflection geometry case,
is the root, closest in magnitude to 1, of

(44)

where

(45)

(46)

(47)

The spatial coordinates of the degeneracy surface are ob-
tained from

(48)

(49)

(50)

A numerical example is given in Fig. 16. It is interesting
to note that the degeneracy surface in this case is identical
to the surface obtained in the case of a plane wave signal
(derived immediately above) with and
inverted output coordinates

For the plane wave signal 90geometry case, the
quadratic equation for is also of the form

(51)

where

(52)
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Fig. 16. Degeneracy surface (space and color) of the reflection recording geometry with a spherical
wave signal, computed numerically. The parameters for this plot wererf = (�100; 100;�2500)�;
rs = (0;0;�3000)�; �500� � x0; y0 � 500�;z0 = �3000�: In the plot, the blue color
corresponds to� = 0:966 and the purple to� = 1:0:

(53)

(54)

After solving for as the root of the quadratic with
magnitude closest to 1, the spatial coordinates are obtained
from

(55)

(56)

(57)

A numerical example is given in Fig. 17.
For the sake of completeness, we also give the result for

the degeneracy surface of a volume hologram recorded with
a spherical wave signal in the 90geometry (see Fig. 18 for
the notation). The calculation of the diffracted field cannot
be done under the framework of Sections IV-A and IV-
B and will not be given here. However, the degeneracy
derivation is straightforward. It results also in a quadratic
equation for of the form

(58)

where

(59)

(60)

(61)

The spatial coordinates of the degeneracy surface are given
by

(62)

(63)

(64)

with computed from (58). A numerical example is given
in Fig. 19.

V. STATISTICAL PROPERTIES OFDIFFRACTION

FROM VOLUME GRATINGS

In the examples of the previous sections, we made
assumptions about the nature of the random objects recon-
structing the volume hologram, as well as about the form of
the hologram itself. In particular, we worked with volume
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Fig. 17. Degeneracy surface (space and color) of the 90� recording geometry with a plane wave
signal, computed numerically. The parameters for this plot wererf = (100;�100;�2500)�;
u = 0;�0:3 � x0=F; y0=F � 0:3: In the plot, the blue color corresponds to� = 0:619 and
the purple to� = 1:246:

holograms recorded with a spherical reference beam and de-
rived their operation as point-source correlators for imaging
under two conditions: 1) when replacing the collector lens
in a fluorescent confocal microscope with a monochromatic
object (Section III-C), they improve the resolution of the
regular confocal arrangement, and 2) when reconstructing
a polychromatic (4-D) object, they isolate a surface in
the space and wavelength domain, allowing the full 4-D
tomographic reconstruction of the object with appropriate
scanning (Section IV-C). Color-selective tomography is a
unique property of volume holograms as optical elements
and cannot be achieved by a design that incorporates planar
optical elements only. In this section, we generalize the
volume hologram operation as shaping the modes of the
object field through correlation (mixing) with the modes of
the volume hologram.

As we mentioned already in Section III-A, computational
imaging is performed, in general, by transformations on the
intensity values of the field at the detector plane. When
viewed as an analysis problem, this means that one needs
to know the statistical properties of the intensity values at
the output plane as a function of the imaging system and
the statistics of the object. From the design point of view,
it is desired to construct the imaging system so as to shape
the output intensity statistics appropriately for the task at
hand. The intensity transformation law between the source
intensity distribution and the intensity distribution at
the detector space is, in the case of a completely

Fig. 18. Schematic of the 90� geometry with sperical wave
reference and signal beams.

incoherent source, of the form

(65)

where the transfer function describes the operation
of the optical system.

In many imaging systems, there is a single optical beam
propagating between the object and image. Such was the
operation of the volume holographic system of Figs. 6,
10, 13, 14, and 18. We would like to characterize the
operation of a volume hologram in configurations where
two or more beams interfere on the detector plane. In such
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Fig. 19. Degeneracy surface (space and color) of the 90� recording geometry with a spherical
wave signal, computed numerically. The parameters for this plot wererf = (�100; 100;�2500)�;
rs = (3000;0; 0)�; �500�� y0; z0 � 500�;x0 = 3000�: In the plot, the blue color corresponds
to � = 0:979 and the purple to� = 1:0:

interferometric systems, the measurement contains
information about the statistical correlation properties of
the field at the output. We therefore need to model the
effect of volume diffraction on the correlation properties of
a random optical field. To this end, in the remainder of this
section, we first introduce the notation and terminology of
statistical optics [131], [132] and rederive the deterministic
correlation property of volume diffraction; we then gener-
alize the correlation property in a statistical framework and
use the modal decomposition of both the field coherence
function and the hologram refractive index modulation in
order to formulate the operation of the volume hologram
as a design problem.

Suppose the geometry of an imaging system is such
that the fields from two observation points
interfere at every point in the detector space. The
measurement then is (dropping the dependence of

for notational simplicity)

E.V. (66)

Using the definitions

E.V. (67)

E.V. (68)

where is the relative time delay between the two optical
paths and is the second-order correlation function of the
random optical field, we obtain for the detected intensity

the result

Re (69)

The last result states that the interferometric measurement
contains the field correlation information superimposed on a
quasi-uniform bright background (typically, the variation of

with is very small). Instead of it is
typical to assume that the field is quasi-monochromatic, and
that the path delay is and use the mutual intensity

defined as

(70)

Relation (69) then becomes

Re (71)

These results are well known and hold for any inter-
ferometric optical system; we seek to compute the effect
of a volume hologram on the mutual intensity
Before getting to that point, though, it is useful to repeat
a deterministic property of volume diffraction: if a volume
hologram is illuminated by a complex (coherent) field, then
the diffracted field contains the 2-D correlation between
the input field and the pattern(s) stored in the modulated
refractive index of the hologram. The generalization to
statistical fields is then obvious.

Let be the volume where a three-dimensional
monochromatic (at wavelength ) probe light
source is confined, and the field emitted by an
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infinitesimal source volume at Let be the
volume where a 3-D perturbation of the refractive
index is confined for i.e., a volume
hologram. When the field scattered by reaches
a secondary diffracted field is
produced. Let denote a vector of unit magnitude in
an arbitrary direction that from here on we refer to as
“optical axis.” The 3-D spatial spectrum of the source field
is denoted as

(72)

with a similar expression for We also denote

The correlation property is then expressed as follows:

(73)

for satisfying where the denotes correlation
and is the complex conjugate of The proof of this
statement is given in Appendix I.

The generalization of (73) to a random field is straightfor-
ward. We define the spatial Fourier transform of the source
mutual intensity function as

(74)

with a similar expression for Then, under the
constraint is related to

through

(75)

Similar to Appendix I, we used the notation
The proof of (75) is given

in Appendix II. (This expression also follows directly by
specializing a result derived in [112] to the case of a
volume hologram; the full proof is given here for com-
pleteness.) This is also a correlation relation between the
six-dimensional functions and
constrained on the 4-D sphere

We now seek to cast (75) as a design problem. To this
end, we decompose both the Fourier-transformed mutual
intensities and the index modulation

in their respective modes and show how the modes
mix as a result of volume diffraction.

The coherent mode decomposition property for a general
random field states that, under some general existence
and continuity conditions for the cross-spectral density,
the quantity can be decomposed into a sum of

products of orthogonal modes. For the source field, the
decomposition is written as follows:

(76)

where the are the eigenfunctions and the the
eigenvalues of the Friedholm-type integral equation

(77)

The orthogonality of the eigenfunctions is expressed by

(78)

It is straightforward to prove that the decomposition also
holds in the spatial-spectral domain; i.e.,

(79)

Since the volume occupied by the hologram is finite,
we can decompose into a Fourier series, according to

(80)

The orthogonality condition for the basis IN is
expressed as

(81)

We seek to compute the coherent mode decomposition of
the mutual intensity of the diffracted field in terms of the
modes (76) of the source mutual intensity and the modes
(80) of the volume hologram. In Appendix III we show that

(82)

where, for

(83)

In the space domain, the above expression can be rewritten
as

(84)

Expressions (83) and (84) are the key results of this
section: they express the modal structure of the diffracted
field as a mixture of the coherence modes of the source and
the modes of the volume hologram [note that the modes in
(83) or (84) are not orthogonal but can be orthonormalized
in straightforward fashion with a Gramm–Schmidt proce-
dure]. The mixing occurs primarily through the coupling
constants i.e., the Fourier components of the refractive
index modulation, while the modes of the hologram itself
act as weighting functions. Thus, the design problem is
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defined in terms of (82) and (83) or (84): specify the Fourier
components such that the desired mutual coherence
function is synthesized.

We will not attempt examples of modal design in this
paper, but will point out two conclusions that follow from
our results.

1) In the examples of Sections III-C and IV, the field
is correlated with the particular spherical-reference
mode of the volume hologram. This action is similar
to a matched filter. The response, described by the
degeneracy surfaces, is the set of object field modes
that correlate with the hologram mode.

2) The response of the volume hologram can become
much richer simply by following the modal synthesis
approach delineated before; this is because the cou-
pling coefficients provide three degrees of design
freedom is a three-element vector) thanks to the
3-D nature of the volume hologram.

VI. CONCLUSIONS AND DISCUSSION

In this paper we introduced the concept of using volume
holograms for multidimensional imaging and demonstrated
numerically various imaging functions that a volume holo-
gram can perform. The specific geometries of confocal
microscopy with volume holographic collector and color-
selective tomography are of immediate interest, and we
are currently working on experimental demonstrations. The
modal approach outlined in Section V extends optical en-
gineering design from the traditional surface-to-surface
transformations to the most general domain of volume
transformations. This “3-D optical engineering” approach
is well tuned to the construction of hybrid optical systems,
where optics perform analog transformations at the front
end, while back-plane digital electronic computations pro-
vide the transformations that optical elements cannot do
well (e.g., Fourier transforms on the intensity function,
nonlinearities, etc.) thus completing the generality of the
system. Including volume holograms as analog optical
elements in the design permits maximum flexibility in the
quest for the optimal system.

The commercial value of ubiquitous imaging will un-
doubtedly increase rapidly with the ongoing revolutions
of digital and hybrid imaging. Humans are known to
be “visual” animals, i.e., in most situations they respond
optimally to visual stimulation. In many instances, so-
phisticated visual interfaces can drastically improve the
performance of critical social functions as diverse as edu-
cation of young children and national or corporate security.
Advanced interfaces are also necessary in the domains of
machine vision and machine learning for the improvement
of algorithms or even the invention of new ones based on
the availability of more complete visual information about
the surrounding world. The endowment of optical systems
with powerful elements, such as volume holograms, and
new design approaches geared toward advanced imaging
and visual interface is critical for the achievement of these
technological advances in the near future.

APPENDIX I
PROOF OF THECORRELATION PROPERTY FOR

THE DIFFRACTION OF A COMPLEX FIELD

FROM A VOLUME HOLOGRAM

We will now prove assertion (73). Let us denote by

(85)

the field incident on location of the volume holo-
gram, where Using Born’s approximation,
the field diffracted from the volume hologram is given by

(86)

(87)

where We now use Weyl’s identity for the
expansion of a point source in a spectrum of plane waves

(88)

By using the notation

for the “valid” wave vectors (i.e., the wave vectors that
belong to the sphere also known as the-sphere),
Weyl’s identity is written in simpler form

(89)

Substituting (89) into (87) we obtain successively

(90)

(91)
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(92)

(93)

The last statement is equivalent to (73), which proves the
assertion.

APPENDIX II
PROOF OF THECORRELATION PROPERTY

FOR STATISTICAL FIELDS

Assuming is one realization of the random process
representing the object, we form the correlations according
to

E.V. (94)

E.V. (95)

Substituting Born’s diffraction formula (87) and (94) into
(95), we obtain

(96)

By using Weyl’s identity and proceeding as in Appendix I,
we obtain (75) after a long but straightforward calculation.

APPENDIX III
DERIVATION OF THE COHERENT MODE DECOMPOSITION OF

THE FIELD DIFFRACTED BY A VOLUME HOLOGRAM

To prove (82) we substitute (76) and (80) into (75). This
leads to the expression

(97)

Rearranging the integrals and summations, we rewrite the
above expression as

(98)

The last expression is equivalent to (82) by using definition
(83) for the ’s. The alternative expression (84) follows
from (83) by using Weyl’s identity in reverse, in order to
go back to the space domain.
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