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Abstract 

The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry 
technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are 
presented. 

1. Introduction 

In 1969, Wolf [ 1 ] presented a solution to the optical 

inverse scattering problem [ 21, which can be used for 
the determination of the structure of weakly scattering 
objects. He showed that within the accuracy of the first 
Born approximation the three-dimensional distribution 

of the scattering potential of the object can be compu- 
tationally reconstructed from the distribution of ampli- 

tude and phase of the light scattered by the object. This 
theorem, sometimes called the Fourier diffraction the- 
orem, relates the Fourier transform of the measured 
scattering data with the Fourier transform of the object 

structure [ 31. The first experiments using the amplitude 
and phase of the scattered field in the Fresnel zone 
confirmed the soundness of this concept [ 41. 

It has also been shown [ 51 that if the scattered field 
is measured in the far field of a weakly scattering object, 
one Fourier transform of Wolf’s original theory can be 
omitted and the scattering potential can be obtained by 
a single Fourier transform of the measured scattered 
field data. The first optical reconstructions of the three- 

dimensional scattering potential of microscopic parti- 

cles have been obtained by using this technique. 

A rather basic question in this imaging process is to 
what extent the scattered field data can be measured. 

One wavelength and one direction of illumination only 
yield data on the surface of the Ewald sphere. The same 
problem arises in X-ray, neutron and electron diftiac- 

tion [ 6,7]. No true three-dimensional reconstruction is 

possible with such a limited Fourier data set. As men- 
tioned already by Wolf [ 1 ] and discussed in detail by 

D$indliker and Weiss [ 81, additional Fourier data can 
be obtained by multi-wavelength and multi-directional 
illumination. Multi-directional illumination can be 
realized if a diffraction grating is used in front of the 
object [5]. Multi-wavelength illumination can be 

achieved with tunable lasers or broadband light sources 
like diode lasers and superluminescent diodes. 

In this paper we show how the original formalism of 
Wolf can be modified for the one-dimensional problem 
of length measurement. In this case it suffices to meas- 
ure the intensity of the scattered light at various wave- 
lengths and only one direction of illumination. The 

technique described below can also be considered as a 
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generalization of the old channelled spectra technique 
[ 91. In the channelled spectra technique a white light 
source (with rather low spatial and low temporal coher- 
ence) is used to measure the thickness of thin films 
using interferences (channels) in the spectrum of the 
light remitted from the object [ 10-131. This technique 
is more or less limited to thin films with parallel inter- 
faces. With the technique described below, however, 
large distances even between interfaces of different 
geometrical forms are measured using backscattered 
light. Hence the light used must be spatially coherent 
in order to provide interference between the various 
reflected light waves. As this technique relies on the 
spectral measurement of the resulting light intensity we 
use the term “spectral interferometry”. 

2. Scattering approximation 

We illuminate an object by a monochromatic (wave- 
number k) Gaussian laser beam, see Fig. 1. Let the 
object be positioned at the beam waist and the object 
depth T be of the order of magnitude of the correspond- 
ing Rayleigh length. Then we can assume the object 
being illuminated by an approximately plane mono- 
chromatic wavefront EC’). 

E(‘)(r, kc’), t) =A(i) exp(#i).r-i&) , (2.1) 

where k(‘) is the wavevector of the illuminating wave 
and 1 kc” j = k= 2rrlh is the wave-number. Here we 
use a simplified classical description of the light beam. 
We ignore any field quantization and treat the electric 
field E of the light as a scalar, i.e. we also ignore polar- 
ization effects. Let E (‘) (r kcS) t) be the scattered 
wave. The sum of the two waves E”‘(r, kc’), t) + 
E’S’(r k(S) t) satisfies the Helmholtz equation. In case 
of weakly scattering objects the scattered field can 
be obtained by the first Born approximation [l] as a 
volume integral extended over the illuminated object 
volume V( r’ ) : 

@)(r, kc”‘, t) = - L 
4n- 

F(r’, k”‘)E’(r’, kc’), t) 

V(r’) 

XG( Ir-r’l)d3r’, 

with the Green’s function 

(2.2) 

G( lr-r’/) = 
exp(ik(“)Ir-r’l) 

lr-r’l ’ 
(2.3) 

Eq. (2.2) can be considered a quantification of Huy- 
gens’ principle: Green’s function represents the sec- 
ondary wavelets which combine to form the scattered 
light. The scattering potential F(r, k”‘) = - k’[n*(r, 
k”‘) - 11 determines the relative amplitude of these 
wavelets. 

Now we shall confine the treatment to backscatter- 
ing. We choose the origin 0 of the coordinate system 
x, y, z, at the axis of the illuminating beam at the back 
surface of the object as indicated in Fig. 1. The scattered 
light field is detected at point P(r) on the z-axis a 
distance D outside of the object. If D is much larger 
than the depth T of the object structure the denominator 
I r - r' / of the Green’s function G can be approximated 
by D because the scattering potential F is zero outside 
the region occupied by the object. Furthermore the 

exponent of G is 

k(S) ]r-_r’ I =k(“). (r-r’) . (2.4) 

In addition we neglect any dispersion of the refractive 
index of the object, i.e. we assume the scattering poten- 
tial to be independent of the wavenumber. This approx- 
imation simplifies the subsequent treatment. But it 
should be stressed, however, that a more general treat- 
ment would have to include dispersion as well. With 
these approximations we obtain 

E(“)(r kc’) t) 3 3 

1 
=-- 

4rrD 
F(r’)A(‘) exp(ik(‘)*r’ -iwt) 

V(r’) 

Xexp[% (s)*(r-r’)]d3r’ 

A(i) 
= - G exp(ik(“).r-iwt) 

X c F(r’)exp( -X*r’)d3r’ , (2.5) 
vi’r,, 

where the amplitude A (i) of the illuminating wave has 
been assumed constant within the object. 
K = k (‘) - k (i) is the scattering vector. 

Finally we replace the integrations over x’ and y’ by 
a constant factor W chosen proportional to the cross 
section of the beam waist of the illuminating beam. 
This can be done if the Fresnel number d*/hD of the 
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illuminating beam is smaller than 1 and provided the 
scattering potential F is constant in the x’ and y’ direc- 
tion within the beam. Then we have 

p’(r 
A (i)w 

k(S) t) = - - 
9 9 

4TD 
exp(iZz(“).r-iwt) 

T 

x 
I 

F(z’)exp( - Xz’) dz’ , (2.6) 

0 

tT-DA 

Fig. 1. The object is illuminated along the negative z-axis. The back- 

scattered light wave is detected at point P. k(r) = wavevector of 

illuminating light, k (‘) = wavevector of scattered light. OB = object, 

P = detector position. 

OB RM BS 

PN 

+T-L- 
TL 

Fig. 2. Tunable laser configuration to measure the scattered field at 

a range of k-values. The object is illuminated via the beam splitter 

BS. k”’ = wavevector of illuminating light, k’“’ = wavevector of 

scattered light, kCR’ = wavevector of reference light. OB = object, 

RM = reference mirror, BS = beam splitter, PD = photodetector, 

TL = tunable laser. 

OB RM BS DG 

Fig. 3. “White” light source configuration to measure the scattered 
field at a range of k-values. k(‘) = wavevector of illuminating light, 

k”’ = wavevector of scattered light, kCR’ = wavevector of reference 
light. The object OB is illuminated via the beam splitter BS. 
RM = reference mirror, BS = beam splitter, DG = diffraction grating, 

PA = photodetector array, WL = “white” light source. 

i.e. we can replace the three-dimensional Fourier trans- 
form of Eq. (2.5) by a one-dimensional Fourier trans- 
form. The scattered light has an amplitude which is 
proportional to the (one-dimensional) Fourier trans- 
form of the scattering potential F(z) of the object 
potential (from here on we replace z’ by z) : 

p’(r 
A (i)w 

k(S) t) = - - 
, 7 4*D exp(ik(“)*r-iwt) 

XF”T{F(z) 1 * 

At P the backscattered light wave is: 

_@(P, k, t) =A’“‘(P, k)exp[i+‘“‘(P, k)] 

(2.7) 

A (i)w 
=- G exp(ikD-iwt)FT{F(z)} , V-8) 

i.e. proportional to the Fourier transform of the scatter- 
ing potential. F(z) can be obtained by an inverse Fou- 
rier transform of E’“‘(P, k). Obviously this is only 
possible if the amplitude and phase of the scattered 
field EcS) (P, k) are known for at least a limited range 
of k-values. Though we only have access to the inten- 
sity of the scattered light it is clear that we have to use 
multi-wavelength illumination. 

3. Measurement of scattered field data 

As shown above the scattered light wave has to be 
measured for a range of wavenumbers k. Two basic 
techniques can be used. Either a tunable laser can be 
used as indicated in Fig. 2, or a “white” light source 
together with a spectrometer as indicated in Fig. 3. With 
the tunable laser technique the wavelength has to be 
tuned over a range of wavenumbers and the spectral 
light intensity remitted from the object is detected by a 
photodetector. If a “white” light source, i.e. a light 
source emitting spatially coherent light with large spec- 
tral bandwidth like a multi-mode laser diode or a super- 
luminescent diode is used, a spectrometer is needed to 
display the intensity of the remitted light at the various 
wavelengths (or wavenumbers). 

The wavenumber dependent intensity spectrum Z( P, 
k) of the backscattered light is according to Eq. (2.8)- 
besides a constant C-equal to the square of the Fourier 
transform of the scattering potential of the object: 

Z(P, k) = lE’S’(P, k) l*=ClFT{F(z)) 1’. (3.1) 
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Taking the inverse Fourier transform of Z( P, k) yields object Fo( z) can be represented as a sum of the residual 
the auto-correlation function (ACF)- of the scattering scattering potential FR plus a delta-like scattering 
potential [ 141: potential: 

=C(F*(z)F(z+Z))=CACF,(Z) . (3.2) 

Hence we obtain the ACF of the object scatteringpoten- 
tial and not the object scattering potential F itself. Only 
with very simple object structures the ACF can be deci- 
phered and the true scattering potential of the object 
can be obtained. 

F,(z) =Fn(z) +RG(z-zr) . (3.5) 

Three of the ACF-terms will dominate, namely those 
containing R: 

(FR*(z)RG(z+Z-zd)+(R6*(z-zdFR(z+Z)) 

+(R*S*(z-zi)S(z-zI+Z)) 

=RF;(q -Z) +RFR(zI +Z) +R*6(Z) . (3.6) 
There are two possibilities to obtain the scattering 

potential of the object. Firstly, the scattering potential 
of the object can be obtained if an additional singular 
light remitting interface (reference mirror RM in Figs. 
2 and 3) can be positioned at a distance L from the 
object (at z=zr). In this case the scattering potential 
can be described as a sum of the actual object F,(z) 
plus a delta-like potential (with amplitude reflectivity 
R): 

F(z) = F,(z) +RG(z-z,) . 

Then the auto-correlation yields four terms: 

(3.3) 

In this case we obtain the complex conjugate object 
scattering potential reversed in the Z-coordinate, the 
true object scattering potential with the origin at 
Z= - zr and a large peak at Z= 0. In general the two 
reconstructed scattering potentials will overlap. Only 
if the strongly reflecting interface is at the surface of 
the object two separated object scattering potentials 
will be obtained. (An equivalent configuration is 
achieved if a strongly reflecting interface is positioned 
close to the object.) 

(F$(z)F,,(z+Z)) + (F$(z)RG(z+Z-~1)) 
4. Experiments 

+(RS*(z-z,)F,(z+Z) 

=ACF,(Z) +RF,*(zI -Z) +RF,(q +Z) 

+R%(Z) . (3.4) 

Here the third term yields -besides the constant factor 
R - a true reconstruction of the object structure, cen- 
tered at Z = - zr. A dominating light remitting interface 
can be realized by a reference mirror, as indicated by 
RM in Figs. 2 and 3 in front of the object. Any overlap 
between the four terms of the ACF is avoided by choos- 
ing the distance L between the interface and the object 
larger than the object depth T: Lb- T. But it must be 
kept in mind, that extending the depth of the object 
structure from T to T+ L increases the frequency of the 
Fourier transform and demands for an increased reso- 
lution in the k-space. 

Secondly, the true scattering potential can also be 
obtained if the object itself contains one interface (at 
z = zr) with a relatively large reflectivity R acting as a 
reference mirror. Then the scattering potential of the 

The “white” light source technique described above 

has been used to measure the distances within an eye 
model and the corneal thickness of a human eye in 
vivo. The optical scheme used in these preliminary 
experiments was that of Fig. 3. Because of the simple 
structure of the object used we have omitted the refer- 
ence mirror (RM). A multi-mode laser SHARP LT 
023 MDO, h = 780 nm, A.h = 3 nm (FWHM) was used 
as light source. The intensity spectrum Z(P, k) was 
displayed on a photodiode array. Mod. 6700, COHU, 
320 X 288 pixels (240 X 240 pixels were used), with 
the help of a holographic diffraction grating ( 1800 
lines/mm, Carl Zeiss). The Fourier transform was per- 
formed by a computer (386~SX) on-line. Because the 
laser emission spectrum showed a distinct mode struc- 
ture the spectrum of the empty interferometer was sub- 
tracted from the measured spectrum before the Fourier 
transform. In both experiments the beam waist diameter 
was approximately 1 mm and D E 10 mm, i.e. the Fres- 
nel number was of the order of lo* (!). Hence we 
basically would have to perform the three-dimensional 
Fourier transform of Eq. (2.5). But the light remitted 
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Fig. 4. ACF of the scattering potential F(z) of the anterior part of 
the model eye with interfaces 1, 2, 3 and 4 (see insert) along the 
beam illuminating the eye at the optical axis. Optical distance= 
geometrical distance times refractive index. The ACF peaks corre- 
spond to various distances within the object and can be used to derive 
additional distances. E.g. the distance between the peaks 2-3 and 2- 
4 yields the optical lens thickness. 

from the object is regularly reflected at the interfaces. 
Those parts of the reflected waves which are detected 
at P are reflected at a more or less diffraction limited 
area within the illuminating beam on these interfaces. 
Hence the one-dimensional approximation of Eq. (2.7) 
can be used. 

In a first experiment a model eye with a convex 
spherical window (geometrical thickness 0.5 mm; 
refractive index n = 1.52) representing the cornea and 
a biconvex lens (geometrical axial thickness 3.5 mm, 
refractive index 12 = 1.52) representing the crystalline 

lens at a distance of 2.8 mm was used as object. As the 
reflectivities of the four interfaces were approximated 
equal and no additional singular interface was used we 
obtained the ACF of the scattering potential of the 

object under measurement according to Eq. (3.2). Fig. 
4 shows the auto-correlation of the scattering potential 
F(z) along the axis of the model eye. Note that an auto- 
correlation has its maximum at the origin, the weak 
signal at Z= 0 is caused by the subtraction of the two 
spectra before the Fourier transform. As expected the 
distances measured with the spectral interferometer 
agree with the a priori distances, at least within + 0.1 
mm (up to round-off errors). Compared to the dual 
beam low coherence interferometry technique [ 191 
this precision is about one order of magnitude worse. 
This is due to the low resolution photodiode array (only 
240 pixels in one direction) used in this preliminary 

Residuum of a Laser Mode 

0.0 0.5 1.0 1.5 2.0 

Z + Z, (Optical Distance in mm) 

2.5 3.0 

Fig. 5. Scattering potential of a human eye in uiuo. The main peak 
at z= 0.77 mm indicates the optical comeal thickness. Here too the 
subtraction of the spectra was used to eliminate the laser mode peak 
at 1.1 mm. Because of the large intensity differences of the two 
spectra in this case a rather large peak was left over at the origin and 
a peak corresponding to a higher laser mode. 

experiment and can substantially be improved by using 
a high resolution photodiode array. Furthermore to 
obtain high precision conversion of optical lengths to 
geometrical lengths in case of dispersive substances the 
corresponding group indices would have to be used 

[191. 
In a second experiment we measured the cornea1 

thickness of a human eye at the vision axis in uiuo (the 
optical thickness was known from a dual beam partial 
coherence interferometry measurement [ 151 to be 
equal to 0.77 mm). Here the relatively strong reflecting 
anterior surface of the cornea acted as the reference 
mirror. The reconstructed residual scattering potential 
FR (according to Eq. (3.6) ) is shown in Fig. 5. In this 
experiment no larger distances than the cornea1 thick- 
ness could be measured. This is partly due to the weak 
intensity of the light waves remitted at the correspond- 
ing interfaces in the eye, partly due to the divergence 
of the reflected waves and partly due to the limited 
etendue of the spectrometer used in this experiment. 

5. Conclusion 

It has been shown that a modification of the original 
formalism developed by Wolf [ 1 ] yields the basic 
physics for spectral interferometric length measure- 
ments. Spatially coherent “white” light sources can be 
used to measure distances by backscattering spectral 
interferometry. The advantage of this technique as 
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compared e.g. to partial coherence interferometry [ 1% 
191 is that no moving parts are needed. As this tech- 
nique can be very fast and yields the distribution of the 
object scattering potential along the illuminating light 
beam it can also be used in partial coherence tomog- 

raphy [ 201. 
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