Charged Particle Interactions

22.104 Spring 2002
Types of Particles

- Heavy charged particles
 - p, d, α, ions
- Electrons
Major Heavy Particle Interactions

- We observe:
 - loss of energy by the particle
 - deflection of the particle from initial direction

- primarily as a result of:
 - inelastic collisions with atomic electrons
 - elastic scattering from nuclei

- but other (less likely) processes are:
 - Cherenkov radiation
 - nuclear reactions
 - bremsstrahlung
Collision of Heavy Charged Particle with Atomic Electron
Bethe-Bloch formula

\[-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2 m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 \right]\]

In practice, however, two corrections are normally added: the density effect correction \(\delta \), and the shell correction \(C \), so that

\[-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2 m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 - \delta - 2 \frac{C}{Z} \right]\]
Bethe-Bloch formula definitions

\[2 \pi N_a r_e^2 m_e c^2 = 0.1535 \text{ MeVcm}^2/\text{g} \]

- \(r_e \): classical electron radius = \(2.817 \times 10^{-13} \text{ cm} \)
- \(m_e \): electron mass
- \(N_a \): Avogadro's number = \(6.022 \times 10^{23} \text{ mol}^{-1} \)
- \(I \): mean excitation potential
- \(Z \): atomic number of absorbing material
- \(A \): atomic weight of absorbing material
- \(\rho \): density of absorbing material
- \(z \): charge of incident particle in units of \(e \)
- \(\beta = \frac{v}{c} \): of the incident particle
- \(\gamma = \frac{1}{\sqrt{1 - \beta^2}} \)
- \(\delta \): density correction
- \(C \): shell correction
- \(W_{\text{max}} \): maximum energy transfer in a single collision.

The maximum energy transfer is that produced by a head-on or knock-on collision. For an incident particle of mass \(M \), kinematics gives

\[W_{\text{max}} = \frac{2 m_e c^2 \eta^2}{1 + 2 s \sqrt{1 + \eta^2 + s^2}}, \]

where \(s = m_e / M \) and \(\eta = \beta \gamma \). Moreover, if \(M \gg m_e \), then

\[W_{\text{max}} \approx 2 m_e c^2 \eta^2. \]
Bethe-Bloch with Corrections

\[
\frac{dE}{dx} \text{ [MeV cm}^{-2}\text{g}\text{m}]}
\]

- with corrections
- without corrections

Energy [MeV]
dE/dx for various heavy particles
Bragg Curve

\[\frac{dE}{dx} \]

Penetration depth
Channeling In Crystals
Range Number-Distance Curve
Range Curves Heavy Particles
Computational Tools

- Generally, exact calculations are difficult due to multiple scatters, low energy effects, etc.
- Use SRIM 2000 as a computational tool for ion interactions in a variety of materials
- Program is on the lab computers in NW13-133
- Can be obtained on web
 - http://www.research.ibm.com/ionbeams/home.htm#SRIM
SRIM-2000 Input Data
Example of SRIM-2000 Output
5.79 MeV α in air
Cherenkov Radiation
Electron Interactions

- **Collisions**
 - Bethe-Bloch modified due to small electron mass

- **Bremsstrahlung**
 - Small electron mass makes this a major process above a few MeV (note that process is inverse to mass^4!)

\[\sigma \propto r_e^2 = \left(\frac{e^2}{mc^2} \right)^2 \]
Radiation Loss vs. Collision Loss for Electrons
Range Number-distance for Electrons

Absorption of homogeneous β-rays in aluminium

Intensity

0 40 80

g/cm^2

0 0.2 0.4 0.6 0.8 1.0

421 keV 727 keV 1011 keV 1370 keV 1666 keV
Range Curves for Electrons

![Graph showing range curves for electrons in different materials (Polyethylene, Aluminum, Lead) as a function of energy. The x-axis represents energy in MeV, ranging from 0.1 to 100, and the y-axis represents range in g/cm², ranging from 10⁻² to 10².]
Absorption Curves for β decay of 185W
Example of Multiple Scattering

\[
\begin{align*}
\theta & \quad \theta_x \\
\end{align*}
\]
Angular Distribution of Scatter

![Graph showing angular distribution of scatter]

- Fractional scattering per square degree
- Scattering angle [degrees]
- 18.66 mg/m²
- 37.28 mg/cm²

MIT Department of Nuclear Engineering
Electron Backscatter
Electron Backscatter Coefficients from Light Elements
Electron Backscatter from Heavy Elements
Radiation Loss vs. Collision Loss for Electrons
Practical Example: Electron LINAC

Rough rule for LINAC gives R (Rad/min/mtr) as function of accelerator energy in MeV and current in μA. Energy spectrum is flat but photon spectrum shows increase at low energy:

$$R = 0.07i_{\text{avg}} E^{2.67}$$

$$\frac{dW}{dE} = k$$

$$\frac{dN}{dE} = \frac{dN}{dW} \frac{dW}{dE} = \frac{k}{E}$$

Thick target correction reduces low energy increase.
Bremsstrahlung With Thick Target