Semiconductor Radiation Detectors

22.104 Spring 2002

Outline

- Basic materials
- ✿ Electronic Properties
- Detector Efficiency
- Energy Resolution
- Noise
- Limitations

General Issues

- Sensitivity
- Detector Response
- Energy Resolution
- Response Function
- Response Time
- Detector Efficiency
- Dead Time

Basic Materials

- Ge
- o Si
- ✿ CdTe
- **⇔** Hgl
- CdZnTe

Crystal Structure of Ge and Si

Electronic Structure

MIT Department of Nuclear Engineering

Energy band structure

Energy Band Structure

Ge and Si Properties

	Si	Ge
Atomic number Z	14	32
Atomic weight A	28.1	72.6
Density [g/cm ²]	2.33	5.32
Dielectric constant (relative)	12	16
Intrinsic resistivity (300 K) [Ω cm]	230000	45
Energy gap (300 K) [eV]	1.1	0.7
Energy gap (0 K) [eV]	1.21	0.785
Electron mobility (300 K) [cm ² /Vs]	1350	3900
Hole mobility (300 K) [cm ² /Vs]	480	1900

MIT Department of Nuclear Engineering

Interaction with radiation

If a field is applied, no current flows since electrons can't pick up energy as there are no higher energy states in the valence band.

BUT

If a bond is broken, then this moves an electron into the conduction band and leaves a "hole" in the valence band.

Both the "hole" and the electron can now move under the influence of the field.MIT Department of Nuclear Engineering22.10422.104S2002

Time Development of Signals

MIT Department of Nuclear Engineering

Semiconductor Detectors

• Semiconductor detectors are *lonization Chambers*

- Detection volume with electric field
- Energy deposited
 - » + and charge pairs
- Charges move in field
 - » Current in external circuit
- Detection medium can be:
 - Solid
 - Liquid
 - Gas

Electronic Signal Development

22.104 S2002

Relevant Material Properties

	gas	liquid	solid
density	low	moderate	high
atomic number Z	low	moderate	moderate
ionization energy ε_i	moderate	moderate	low
signal speed	moderate	moderate	fast

Desirable Material Properties

low ionization energy

- 1. increased charge yield dq/dE
 - 2. superior resolution

$$\frac{\Delta E}{E} \propto \frac{1}{\sqrt{N}} \propto \frac{1}{\sqrt{E / \varepsilon_i}} \propto \sqrt{\varepsilon_i}$$

high field in detection volume

$$\Rightarrow$$
 1. fast response

2. improved charge collection efficiency (reduced trapping)

Absolute Efficiency

22.104 S2002

Relative Efficiency

22.104 S2002

Absolute Efficiency vs Energy

Energy resolution and "quantum sinks" for Scintillators

Energy resolution and "quantum sinks" for Semiconductor detectors

Key Properties of Semiconductor Detectors

- Excellent Energy Resolution
- Slow Time Response
- Compact

Coaxial Ge Detectors

+

+

ion-implanted or

lon-implanted or

active region

evaporated contact

evaporated contact active region

Closed-End N-type IGC

Importance of Resolution

Find structure in spectra

(J.Cl. Philippot, IEEE Trans. Nucl. Sci. NS-17/3 (1970) 446)

MIT Department of Nuclear Engineering

Importance of Resolution

Noise Sources

- Statistical
- Leakage current
- Electronic amplifier
- ✿ Trapping
- Ballistic effects

Charge Amplifier

Trapping of Charge

Room Temperature Materials

CdZnTe
Hgl
Si

Advantages of Room Temperature Detectors

Compact

- Do not require cryogenics
- Potentially low cost

Limitations of Room Temperature Detectors

- Trapping
- Difficulty in making large detectors
- No industrial production (compared to Si)
- Yields
- Costs

Conclusions

- Semiconductor detectors and technology growing
- Important when combined with modern IC technology
- ✿ Attractive performance potential