Core Physics Calculations using MCNP as a preprocessor

Introduction

In a fast spectrum, non-gas-cooled reactor, the migration area of neutrons is exceptionally large, and thus the heterogeneity of the core geometry becomes trivial to carrying out most reactor physics calculations.  Gas-cooled fast reactors, however, are an exception to this rule given the neutron streaming through coolant channels.

There are aspects particular to a fast reactor that make the diffusion theory approach directly applicable to calculating reactor physics design products, particularly the effective eigenvalue of the core as well as the radial and axial power distributions and reflector worth.

Diffusion theory works best in applications where the flux is predominantly isotropic and the materials are effectively homogenous.  This is the exact case in a fast reactor where the large migration length of the neutrons effectively masks the details of the heterogeneity of the fuel geometry (because the average neutron track length typically far exceeds the dimensions of the repeating lattice size).  Additionally, for this same reason, self shielding and therefore Dancoff corrections will not be required.  

Lastly, since the fast reactor will eschew moderating materials, the predominance of the materials in the core will be comprised of high Z scatters, lending to an almost completely isotropic neutron scattering.

Based on the applicability of diffusion theory to these particular types of reactors, it is worthwhile to use this methodology based on the short turn around time in producing design products during the iterative parts of the design process.

Methodology

The following is a proposed methodology for using Diffusion theory with an MCNP pre-processing step.  To complete the design calculations required, what is of most importance to the designer is the fast-spectrum-averaged single group cross sections for scattering, absorption, and fission.

In a fast reactor, the background scattering cross section of most materials is proportional to A2/3 while the neutron absorption cross sections tend to be small in a fast spectrum.  Since most materials in the core will be high Z materials, it is clear that the transport of neutrons in a fast reactor tends to be completely dominated by scattering, this is most clearly illustrated by the large migration length of neutrons in terrestrial fast reactors.

Therefore, the first approximation we must make to the diffusion theory approach is that in a fast spectrum reactor, the transport cross section can be expressed as the scattering cross section.

Since we predict that the migration length of the neutrons will far exceed the dimension of the unit cell (or repeating lattice) of the core, the specifics of the geometry are not necessary to carry out the reactor physics analysis of the core.

In order to carry out the necessary calculations, group averaged cross sections will be required, but these may be generated using MCNP with a homogenous unit cell model.  A simple example will illustrate how to carry out this type of calculation on a unit cell model. 

Let us assume that we have a core that is comprised only of fuel, structure, and coolant material.  To calculate the smeared density (necessary for the MCNP input file) one basically does a weighted average of the number density based on the volume fraction of the materials in the unit cell.

Let us assume that the density of the fuel, structure, and coolant are represented by F, S, and C respectively.  We must calculate the material number density for each isotope present in the material. A simple example will be done for UO2.
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Where X is the fuel enrichment.  Note that we have not done any smearing of the materials yet, this merely represents transforming information about the mass density of a given material into the number density of the nuclides present in that material

Once the number densities for each nuclide in each material has been calculated, one can smear the material together into one composite material to be input in MCNP as a single cell.  This is done by counting the number of each nuclide present in the entire model, summing them and dividing by the total volume of the model to achieve the composite material number density.  As we will see what are more interested in is not necessarily the volume, but rather the volume fraction.
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Here n is an index for the region in the model, i is an index of the nuclide, and v is the volume fraction of a particular region in a model.  It is also important to tally and keep track of the product of the volume fraction and nuclide number density product, as that will be important later in defining the material card on the MCNP input deck.

The total number density is now input as the material density in the MCNP input deck cell card.  The material card is somewhat trickier.  After each nuclide, the atom fraction of that nuclide in the composite material must be input.  That atom fraction is calculated for a given nuclide according to the following formula
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Lets continue with the very simple example of UO2 and ZrO2 in a 50 / 50 blend.  ZrO2 and UO2 have the same number density nominally.  
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These equations allow one to develop all of the number necessary to characterize the material in the MCNP input.  

Pre-processing and Data

There are specific sets of data that are worth calculating in MCNP, particularly, the neutron spectrum and the neutron spectrum averaged cross sections.  The cross sections are what are important in terms of calculating the power distribution using Diffusion theory.  What is also important to calculate is the core eigenvalue.

The MCNP output will include the k-inf (or infinite medium eigenvalue).  This is a representation of what the multiplication factor of the core would be if there were no leakage.  However, given that diffusion theory is applicable, the infinite eigenvalue can be used to calculate the core eigenvalue easily by weighing the infinite value by the probability of non-leakage.

First, however, it is important to note what parameters of interest MCNP can generate.  Using tallies, MCNP can calculate group averaged cross sections for any interaction in the material.  Of interest to the core designer in this case are the scattering, absorption, and fission cross sections.  There are several ways to go about calculating these.  In most cases it will involve doing a tally over the integral of the neutron spectrum and the interaction cross section for a particular nuclide.  The macroscopic cross sections can then be calculated by multiplying the integrated interaction tally by the atom fraction and the smeared number density and then dividing by a tally for the flux.  In essence, the following equations show what the MCNP tally will output and how to use that to generate macroscopic cross sections
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the average cross section is the ratio of the tallies generated by MCNP. There are several mechanisms for setting up these tallies, and in some cases MCNP can automatically calculate the macroscopic cross section for you.  This result can be for a composition of materials or a single nuclide.  You may refer to the MCNP manual or ask for additional assistance in setting up the required tallies.

Diffusion Reactivity

Once MCNP has generated the one-group spectrum averaged cross sections, simple Diffusion theory will give you everything else that you need.

For a simple reactor geometry, the probability of non-leakage can be approximated as follows (simple example)
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M is the migration length of the neutrons and Bg is the geometric buckling.  M is related to the diffusion coefficient and the absorption cross section, and Bg depends on the core geometry.  In most cases the core geometry of interest will be cylindrical.
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Also, as can be shown by taking derivatives and maximizing reactivity, the optimal geometry for a cylindrical core is roughly H/2R ~ 1.  That is where the leakage is minimized.

The geometric parameters for your core, however, will be included in the buckling term.  Note that you may have to dissolve the probability of non-leakage into 2 terms, one for axial and one for radial leakage.  The following example is for a cube reactor.
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Here the length of one side is a and ex refers to the extrapolation distance.  The extrapolation distance can be calculated (and must be calculated) using the following (only for a bare reactor).  If a reflector is used, then an albedo boundary condition and reflector savings method can be used to calculate the reactivity of the core.
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The effect of increasing the length of one side of the core from a to b can be investigated by dissolving the buckling term as follows.
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If a reflector is employed, the albedo boundary condition can be employed, it is an extension of the extrapolation distance methodology.  The albedo () affects the extrapolation distance as shown below.
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As the albedo approaches unity the core appears to be infinite and the power shape flattens and reactivity increases.  A simple expression for the albedo of a material is shown below.
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The approximation is only true for very thick reflectors, which may not be the case in a compact space reactor.  The wex refers to the vacuum boundary extrapolated width of the reflector.

The reflector savings is shown below, it is merely the difference in core size that would be required to make up for the reactivity worth of the reflector.
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The expression for the savings is also only valid under the conditions where the reflector size is large compared to the diffusion length in the reflector.

Reflector cross sections for heavy materials can be approximated using the neutron spectrum in core, for light reflectors, such as BeO a simple core model may be required to figure in the spectral effect of the moderation that takes place in the reflector.

Diffusion Power Distribution

The power distribution in the core will simply be the product of the fission cross section and the flux.  The distribution should be normalized to avoid confusion over the units.  The power distribution is found by solving the one group neutron diffusion equation in the core and reflector regions, or perhaps just the core region using an albedo boundary condition.  In either case, this is a well-understood procedure.
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