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The many activities of metal ions in biology have stimulated the

development of metal-based therapeutics. Cisplatin, as one of

the leading metal-based drugs, is widely used in treatment of

cancer, being especially effective against genitourinary tumors

such as testicular. Significant side effects and drug resistance,

however, have limited its clinical applications. Biological carriers

conjugated to cisplatin analogs have improved specificity for

tumor tissue, thereby reducing side effects and drug resistance.

Platinum complexes with distinctively different DNA binding

modes from that of cisplatin also exhibit promising

pharmacological properties. Ruthenium and gold complexes

with antitumor activity have also evolved. Other metal-based

chemotherapeutic compounds have been investigated for

potential medicinal applications, including superoxide dismutase

mimics and metal-based NO donors/scavengers. These

compounds have the potential to modulate the biological

properties of superoxide anion and nitric oxide.
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Abbreviations
dien diethylenetriamine

en ethylenediamine

ER estrogen receptor

NAMI Natrans-[Ru(Im)(Me2SO)Cl4]

NAMI-A (ImH)trans-[Ru(Im)(Me2SO)Cl4]

P-gP P-glycoprotein

SOD superoxide dismutase
trans-DDP trans-diamminedichloroplatinum(II)

Introduction
Medicinal applications of metals can be traced back

almost 5000 years [1]. The development of modern

medicinal inorganic chemistry, stimulated by the seren-

dipitous discovery of cisplatin, has been facilitated by the

inorganic chemist’s extensive knowledge of the coordina-

tion and redox properties of metal ions. Metal centers,

being positively charged, are favored to bind to negatively

charged biomolecules; the constituents of proteins and

nucleic acids offer excellent ligands for binding to metal

ions. The pharmaceutical use of metal complexes there-

fore has excellent potential. A broad array of medicinal

applications of metal complexes have been investigated,

and several recent reviews summarize advances in these

fields [2–6]. Some selected compounds that are currently

used in clinical diagnosis and treatment are shown in

Figure 1. Designing ligands that will interact with free or

protein-bound metal ions is also a recent focus of med-

icinal inorganic research [7–9]. For example, chelating

ligands for copper and zinc are being investigated as a

potential treatment for Alzheimer’s disease [10]. Devel-

oping metal complexes as drugs, however, is not an easy

task. Accumulation of metal ions in the body can lead to

deleterious effects. Thus biodistribution and clearance of

the metal complex as well as its pharmacological specificity

are to be considered. Favorable physiological responses of

the candidate drugs need to be demonstrated by in vitro
study with targeted biomolecules and tissues as well as

in vivo investigation with xenografts and animal models

before they enter clinical trials. A mechanistic understand-

ing of how metal complexes achieve their activities is

crucial to their clinical success, as well as to the rational

design of new compounds with improved potency.

Because of space limitations, this review focuses on

recent advances in developing platinum, ruthenium

and gold anticancer agents with an emphasis on platinum

compounds. We also cover superoxide dismutase (SOD)

mimics and metal complexes as nitric oxide donors and

scavengers.

Platinum-based anticancer agents
Much research attention has been paid to platinum com-

plexes as potential anticancer drugs because of the success

of cisplatin. Cisplatin, cis-diamminedichloro-platinum(II)

(Figure 1), one of most widely used anticancer drugs, is

effective in treating a variety of cancers, especially testi-

cular cancer, for which it has a greater than 90% cure rate.

Cisplatin enters cells by passive diffusion [11] and also, as

recently discovered, by active transport mediated by the

copper transporter Ctr1p in yeast and mammals [12��,13�].
Details about this latter mechanism remain to be eluci-

dated. The cytotoxicity of cisplatin originates from its

binding to DNA and the formation of covalent cross-links.

The 1,2-intrastrand d(GpG) cross-link is the major adduct.

Binding of cisplatin to DNA causes significant distortion of

helical structure and results in inhibition of DNA replica-

tion and transcription [11,14�]. The distorted, platinated

DNA structure also serves as a recognition binding site for

cellular proteins [15,16], such as repair enzymes, transcrip-

tion factors, histones and HMG-domain proteins. Binding

of the HMG-domain proteins to cisplatin–DNA lesions has
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been suggested to mediate the antitumor activity of the

drug [17–19]. The anticancer efficacy of cisplatin is also

influenced by the efficiency of cisplatin–DNA adduct

removal by the cellular repair machinery, with nucleotide

excision repair being a major pathway. The repair of

platinum–DNA cross-links is retarded when the DNA is

bound to the histones in a nucleosome core particle [20�].

The clinical success of cisplatin is limited by significant

side effects and acquired or intrinsic resistance. Therefore,

much attention has focused on designing new platinum

compounds with improved pharmacological properties and

a broader range of antitumor activity. Several platinum

complexes (Figure 2) are currently in clinical trials, but

these new complexes have not yet demonstrated signif-

icant advantages over cisplatin. Oxaliplatin has been

approved for clinical use in Europe, China and, for colo-

rectal cancer, the United States. Strategies for developing

new platinum anticancer agents include the incorporation

of carrier groups that can target tumor cells with high

specificity. Also of interest is to develop platinum com-

plexes that bind to DNA in a fundamentally different

manner than cisplatin in an attempt to overcome the

resistance pathways that have evolved to eliminate the

drug. These complexes may provide a broader spectrum of

antitumor activity. Here we focus on recent efforts to

prepare novel Pt(II) complexes using the strategies

described above and review some mechanistic insights

into the cytotoxic effects of these complexes. Pt(IV) com-

pounds are not discussed here as they have been recently

reviewed [21].

Cisplatin analogs with carrier groups

Drug delivery systems that can target a tumor site and/or

prevent binding to non-pharmacological targets are ben-

eficial in reducing drug toxicity and resistance. Polymer-

coated micelles can protect platinum from intracellular

thiols and result in prolonged circulation time in the

bloodstream. Because of vascular leakage and reduced

Figure 1
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lymphatic clearance, polymeric compounds tend to accu-

mulate in tumor tissue, enhancing delivery of cisplatin to

tumor sites. Recently, a poly(ethylene glycol) micelle was

prepared containing a poly(aspartic acid) block to provide

the chelating and leaving groups for platinum ions. It

displayed a significantly longer circulation time in the

bloodstream and higher accumulation in tumors, as

demonstrated by an in vivo biodistribution assay of Lewis

lung carcinoma-bearing mice [22�]. Reduced accumula-

tion in kidney was also observed, resulting in low nephro-

toxicity, one of the major side effects of cisplatin.

Similarly, a series of platinum–polymer conjugates with

trans-1,2-diaminocyclohexane as spectator ligands was

investigated. In vitro cell survival tests of three conjugates

showed their cytotoxicities to be 10-fold higher than that

of cisplatin against Colo320 DM cells, a multidrug-

resistant cell line [23].

To achieve tissue specificity, a homing moiety such as

galactose [24,25] and bile acid [26,27] for liver and estro-

gen derivatives for estrogen receptor (ER) positive tissues

[28] such as breast have been utilized. For example,

platinum–polymer conjugates with attached galactose

exhibited cell-specific cytotoxic activity against human

hepatoma cells. The cytotoxicity was suggested to be

mediated by galactose receptors expressed on the surface

of the cells [24,25]. Similarly, a platinum–estrogen linked

compound showed effective binding both as isolated

receptor and in whole cell assays [28]. The antitumor

activity of this complex, however, was not evaluated.

Other strategies to improve the antitumor efficacy include

the use of porphyrin–platinum conjugates. The porphyrin

enhances tumor specificity of the conjugates by its pre-

ferable accumulation in neoplastic tissues. In addition,

porphyrins are commonly used in photodynamic therapy

[4]. Thus by linking a platinum complex to a porphyrin

moiety, additional toxicity against tumor cells can be

achieved upon irradiation. Indeed, porphyrin–platinum

complexes derivatized with either a hematoporphyrin

[29] or a tetraarylporphyrin [30] exhibited enhanced

cellular uptake and additional antitumor activity by the

photo-induced mechanism.

Because DNA is a key pharmacological target of platinum

compounds, DNA-targeting groups such as intercalators

were conjugated to the metal over a decade ago [31–33].

Such compounds exhibit enhanced antitumor activity.

Renewed interest in platinum complexes with appended

intercalators has produced some promising results. A

series of cis-ethylenediamineplatinum(II) complexes with

tethered 9-aminoacridine-4-carboxamides was able to

overcome cross-resistance in human ovarian carcinoma

cell lines in vitro [34]. Altered DNA sequence specificity

and increased DNA binding rates compared with those of

cisplatin were observed for these intercalator–platinum

conjugates [35].

Trans- and multinuclear platinum complexes

Platinum complexes with distinctively different DNA

binding modes from that of cisplatin may provide higher

antitumor activity against cisplatin-resistant cancer cells.

Among such complexes are those with amine ligands

having trans stereochemistry. The trans analog of cisplat-

in, trans-diamminedichloroplatinum(II) (trans-DDP), is

inactive, but its inertness may originate in part from

kinetic instability and consequent susceptibility to deac-

tivation. Substitution of one or both ammine ligands in

trans-DDP with more bulky ligands has produced more

toxic compounds. The bulky ligands can retard ligand

substitution reactions of the two chloride ions, thereby

reducing undesired reactions between platinum and cel-

lular components and facilitating its interaction with

DNA. Discovery of these properties has stimulated the

development of additional complexes with trans geome-

try. Several classes of trans platinum complexes have

been characterized, showing favorable cytotoxicity aga-

inst cancer cells, especially cisplatin-resistant cells [36].

The spectator ligands in these complexes can be clas-

sified into three groups: planar aromatic amines, alkyl-

amines and iminoethers. These compounds in general

are more active than their cis analogs against cisplatin-

resistant cell lines. Very recently, a series of trans-Pt(II)-

piperazine compounds were reported that displayed

significant cytotoxicity against cisplatin-resistant ovarian

cancer cells [37]. These cationic complexes are more

water soluble and bind more rapidly to DNA compared

with cisplatin and trans-DDP, whereas their interactions

with two cellular proteins, ubiquitin and myoglobin, are

much slower than those of cisplatin and their neutral

analogs (see Update).

Another class of platinum complexes that bind to DNA in a

manner different from that of cisplatin are multinuclear.

These compounds contain two, three or four platinum

centers with both cis and/or trans configurations. Poly-

amines are generally utilized as linkers to connect the

platinum centers. A representative trinuclear complex,

BBR3464 (Figure 2), has entered a phase II clinical trial

and exhibits activity against pancreatic, lung and mela-

noma cancers. Furthermore, this complex is effective

against human tumor mouse xenografts containing mutant

p53 gene [38]. The p53 gene is a tumor suppressor encod-

ing a nuclear phosphoprotein that mediates cellular

response towards genotoxic stress including cisplatin treat-

ment [39]. Over 60% of human cancers are characterized by

nonfunctional p53. Therefore, the activity of BBR3464

against cells with mutant p53 renders it a potent anticancer

drug. BBR3464 is a highly charged 4þ species. It binds to

DNA rapidly, forming various long-range interstrand and

intrastrand cross-links. The interstrand adducts account for

�20% of the BBR3464-mediated DNA adducts. Recent

mechanistic studies suggest that the interstrand cross-

links, rather than intrastrand adducts, are important to

the antitumor activity [40,41�]. The hypersensitivity of
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BBR3464 to tumors with mutant p53 was investigated

by a p53 binding assay [42,43], suggesting that BBR3463

bypasses p53-mediated pathways.

Monofunctional platinum compounds

In the search for cis-amminedichloro(2-methylpyridine)-

platinum(II) (ZD0473, Figure 2) derivatives with

improved antitumor activity, an unexpected monofunc-

tional platinum(II) complex with one normal and one

cyclometalated 2-phenylpyridine ligand (Figure 3a) was

discovered that exhibited high antitumor efficacy against

cisplatin-resistant mouse sarcoma 180 (S-180cisR) cell

lines [44�]. Consistent with its higher activity in the

resistant cells, more efficient cellular uptake of this

new complex compared with cisplatin was demonstrated.

Reduced accumulation of cisplatin mediated by P-glyco-

protein (P-gP) efflux was suggested to be one of the

pathways for cisplatin resistance in S-180cisR cells. As

a monofunctional complex, the platinum–phenylpyrin-

dine compound cannot form DNA cross-links, indicating

a different binding mode from that of cisplatin unless a

ligand is displaced intracellularly. Its high cytotoxicity in

cisplatin-resistant cells may possibly be a consequence of

diminished DNA repair.

Recently, a platinum(II) complex with a thiourea ligand

(Figure 3b) was reported that showed excellent cytotoxi-

city against a leukemia cell line. The complex may bind

to DNA in a dual manner involving platinum coordination

and acridine intercalation. The complex exhibited activ-

ity against two ovarian cancer cell lines at micromolar

concentrations, but slightly less activity than that of the

free ligand [45,46].

Combinatorial approach for developing new platinum

drug candidates

An approach to discovering new platinum chemotherapeu-

tic agents is to create a library of compounds and screen

them for activity. A parallel synthetic method and an

efficient screening assay are required. Toward this end,

we recently described a synthetic scheme and automated

apparatus for preparing a large number of Pt(II) complexes.

Variation of spectator ligands and leaving groups led to over

3600 Pt(II) complexes [47]. Fast screening was achieved

by using a colorimetric transcription inhibition assay based

on b-lactamase gene expression in BlaM HeLa cell lines.

Four hit compounds were discovered. Three were pre-

viously identified as active cisplatin analogs, and the fourth,

cis-[ammine(2-amino-3-picoline)PtCl2], resembles the pla-

tinum agent ZD0473 (Figure 2), currently undergoing

clinical evaluation. This combinatorial approach can be

applied to prepare other classes of platinum compounds,

providing an alternative strategy for platinum anticancer

drug discovery.

Non-platinum anticancer agents
Ruthenium complexes

Many ruthenium complexes with oxidation state 2þ or

3þ display antitumor activity, especially against meta-

static cancers [48]. The Ru(III) complex Natrans-
[Ru(Im)(Me2SO)Cl4] (NAMI) is currently in a clinical

trial. For Ru(III) compounds, in vivo reduction to Ru(II)

may be required for activity. Cellular uptake of many

ruthenium complexes appears to be mediated by the

iron transport protein transferrin [49]. In general, the

cytotoxicity of ruthenium complexes correlates with

their ability to bind DNA. As an exception, the anti-

metastatic activities of NAMI and its analog (ImH)trans-
[Ru(Im)(Me2SO)Cl4] (NAMI-A) (Figure 4a) do not

appear to involve DNA binding. Instead, they interfere

with type IV collagenolytic activity and reduce the

metastatic potential of the tumors [48]. Angiogenesis

is crucial for metastatic tumor growth. The effect of

NAMI-A on a transformed human endothelial cell line

ECV304 was recently investigated [50]. The results

show that the ruthenium complex triggers apoptosis in

the ECV304 cells.

Organometallic Ru(II) complexes with arene ligands

represent a relatively new group of ruthenium com-

pounds with antitumor activity. Since the initial discovery

that [Ru(Z6-C6H6)(dmso)Cl2] can inhibit topoisomerase

Figure 3
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II activity, three derivatives have been prepared by

replacing the dmso ligand with 3-aminopyridine, p-ami-

nobenzoic acid or aminoguanidine. These analogs show

enhanced efficacy of topoisomerase II inhibition and

higher cytotoxicity against breast and colon carcinoma

cells compared to the parent compound [51]. Recently,

several Ru(II) arene compounds with the formula

[RuII(Z6-arene)(en)X]þ (X ¼ Cl or I, arene ¼ p-cumene

or biphenyl, en ¼ ethylenediamine or N-ethylethylene-

diamine, Figure 4b) were demonstrated to inhibit the

proliferation of human ovarian cancer cells. Some of the

IC50 values were comparable with that of carboplatin [52].

These complexes do not inhibit topoisomerase II activity,

however. One representative compound binds strongly to

DNA, forming monofunctional adducts selectively with

guanine bases. Further studies led to the synthesis of 13

Ru(II) analogs, six of which are quite active against human

ovarian cancer cells. No cross-resistance was observed in

cisplatin-resistant cells. Cross-resistance did occur, how-

ever, with the multi-drug-resistant cell line 2780AD, pos-

sibly mediated through the P-gP efflux mechanism [53�].

Gold complexes

Gold complexes are well known pharmaceuticals, the main

clinical application being to treat rheumatoid arthritis.

They are also active as antitumor agents [54]. Tetrahedral

Au(I) complexes with 1,2-bis(diphenylphosphino)ethane

and 1,2-bis(dipyridylphosphino)ethane ligands (Figure

5a) display a wide spectrum of antitumor activity

in vivo, especially in some cisplatin-resistant cell lines.

Mechanistic studies suggest that, in contrast to cisplatin,

DNA is not the primary target of these complexes.

Rather, their cytotoxicity is mediated by their ability

to alter mitochondrial function and inhibit protein synth-

esis. Very recently, a hydrophilic tetrakis((tris(hydroxy-

methyl))phophine)gold(I) complex (Figure 5b) was

reported to be cytotoxic to several tumor cell lines. With

HCT-15 cells, derived from human colon carcinoma, cell

cycle studies revealed that inhibition of cell growth may

result from elongation of the G1 phase of the cell cycle

[55]. A Au(I) complex having both monophosphine and

diphosphine ligands (Figure 5c) has recently been pre-

pared that is highly cytotoxic against several tumor cell

lines. Its IC50 values are in the micromolar range [56].

Au(III) complexes, with their metal centers being iso-

electronic and isostructural to Pt(II), are thus promising

Figure 4
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candidates as anticancer agents. Indeed, several Au(III)

compounds with multidentate ligands such as en, dien

and damp (N-benzyl-N,N-dimethylamine) are active

against human cancer cell lines [57,58]. A recent in vitro
cytotoxicity study demonstrated promising activity of two

Au(III) complexes with bispyridyl ligands, [Au(bipy)-

(OH)2]PF6 and [Au(bipyc-H)(OH)]PF6 (Figure 5d) [59].

Low cisplatin cross-resistance was observed. Both com-

plexes are quite stable under physiological conditions,

with [Au(bipyc-H)(OH)][PF6] being resistant to sodium

ascorbate reduction. Mechanistic studies indicated that

DNA is not the primary cellular target mediating antitumor

activity of these complexes.

SOD mimics for cardiovascular,
inflammatory, and neurological disorders
As a product of oxygen metabolism, superoxide anion can

trigger oxidative injury to tissues. This activity has been

suggested to be associated with reperfusion and inflam-

matory diseases as well as neurological disorders such as

Parkinson’s and Alzheimer’s disease. In living systems, a

natural defense mechanism against superoxide-mediated

oxidative damages involves SODs, enzymes that cataly-

tically deplete O2
� to form O2 and H2O2. The Cu/Zn-

SOD predominates in extracellular spaces, whereas Mn-

SOD functions in mitochondria. Therapeutic application

of natural SODs is limited by their short plasma half-life,

inability to cross cell membranes, and immunogenic

responses [60]. Therefore, low-molecular-weight SOD

mimics have been vigorously pursued as potential phar-

maceutical agents for treating such diseases.

Among metal complexes (Cu, Fe, Mn) capable of catal-

yzing dismutation of the superoxide anion, those of

manganese are a current focus for developing SOD

mimics as drugs because of the low in vivo toxicity of

this metal ion. Mn(III)-porphyrinato and Mn(II)-pentaa-

zacyclopentadecane complexes exhibited particularly

promising biological activities, with high stability and

catalytic efficacy. Results from systematic modification

of the porphyrin ligand demonstrate that placement of

four positively charged ortho-(N-alkyl)pyridyl groups

(alkyl ¼ methyl and ethyl) in the meso positions of por-

phyrin can strongly facilitate the disproportion of O2
�,

owing to favorable electrostatic contributions [61]. These

manganese complexes reduced oxidative stress injury in
vivo [62�,63]. In the search for a lipophilic manganese

SOD mimic, a dinuclear manganese(III) complex of

biliverdin IX dimethyl ester was discovered to have such

activity. This example is the first whereby O2
� dismuta-

tion is effected by a Mn(III)/Mn(IV) redox couple [64]. In

addition, the manganese complex does not bind to NO

and reacts very slowly with H2O2, demonstrating speci-

ficity towards O2
�. Interactions of SOD mimics with NO

and H2O2 can contribute to their toxicity by reducing free

NO and H2O2 levels, both of which can cause high blood

pressure and weaken the immune system.

Metal-based nitric oxide donors and
scavengers
The discovery of diverse biological roles for NO has stimu-

lated and facilitated the development of NO-targeted

pharmaceuticals. Physiological processes mediated by

NO include neurotransmission, blood pressure regulation

and immunological responses. NO is an excellent ligand

for metal ions. As a consequence, metal nitrosyl com-

plexes have therapeutic values. Sodium nitroprusside,

Na2[Fe(CN)5NO]�2H2O, is used clinically to treat card-

iovascular disorders and lower blood pressure through

release of NO. Toxicity involving cyanide accumulation

has limited its application, however. A search for new

metal nitrosyl complexes led to the discovery of several

classes of ruthenium complexes with promising biological

activity [48]. Among these, trans-[Ru(NH3)4P(OEt)3-

(NO)](PF6)3 exhibited reduced toxicity and similar

hypertensive activity compared with sodium nitroprus-

side in animal studies [65]. Prolonged blood pressure

reduction was observed for trans-[RuII(cyclam)(NO)Cl]-

(PF6)2 in both normotensive and acute hypertensive

Wistar rats [66�], demonstrating its beneficial ability in

controlled release of NO. Overproduction of NO contrib-

utes significantly to various diseases such as sespis, arthritis,

diabetes and epilepsy. Ruthenium–polyaminocarboxylate

complexes are efficient NO scavengers [48,67,68], demon-

strating their therapeutic potential.

Conclusion
Recent advances in medicinal inorganic chemistry

demonstrate significant prospects for the utilization of

metal complexes as drugs, presenting a flourishing arena

for inorganic chemistry. Significant progress in platinum-

based anticancer agents has been achieved, based in part

on a mechanistic understanding of the DNA-binding and

pharmacological effects of cisplatin. Several new com-

pounds with reduced toxicity and high specificity have

been developed. Ruthenium complexes with antitumor

activity are also emerging rapidly. Besides their estab-

lished use to treat arthritis, gold complexes exhibiting

anticancer potency have evolved. Because of the rele-

vance of superoxide anion and nitric oxide to human

disease, synthetic SOD mimics as well as metal-based

NO donors and scavengers offer several possibilities for

therapeutic applications. The future development of

medicinal inorganic chemistry requires an understanding

of the physiological processing of metal complexes, to

provide a rational basis for the design of new metal-based

drugs. Application of new methodologies such as combi-

natorial chemistry, extensively used in organic drug dis-

covery, will be beneficial for the development of

inorganic compounds as therapeutics.

Update
A recent study on globally platinated DNAs with trans-
DDP analogs showed that substitution of one ammine

ligand in the platinum complex with piperidine, piperazine

486 Next-generation therapeutics

Current Opinion in Chemical Biology 2003, 7:481–489 www.current-opinion.com



or 4-picoline resulted in more stable 1,3-intrastrand DNA

cross-links. Increased efficiency for the formation of inter-

strand cross-links was also observed [69].
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