Chapter 9 Solutions

1) A monodentate carboxylate is a σ-only donor, whereas a cysteinate is a σ - and π-donor. Mutating a cysteine to an aspartate will eliminate the band ($\sim 600 \mathrm{~nm}$) in the optical spectrum associated with ligand-to-metal charge-transfer and probably ipsochromically shift the d-d transition band (because RCO_{2}^{-}is not as weak field as RS^{-}).
2) Cytochrome c contains a coordinatively-saturated, O_{h} iron in the active site and does not change coordination number during redox processes. In comparison, myoglobin alternates between five- and six-coordinate depending on redox state. Consequently, the rutheniummodified myoglobin will have an higher reorganization energy and thus a lower rate constant for electron transfer.
3) The maximum rate constant for electron transfer, $\mathrm{k}_{\mathrm{ET}}{ }^{0}$, at van der Waals contact $\left(\mathrm{R}_{0}=3.6 \AA\right)$ through covalent linkages $\left(\beta=0.7 \AA^{-1}\right.$) is $10^{13} \mathrm{~s}^{-1}$. Using this, one can express $\mathrm{T}_{\mathrm{DA}}{ }^{0}$ as follows:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{ET}}^{0}=\left(4 \pi^{2} / \mathrm{h}\right)^{*}\left(\mathrm{~T}_{\mathrm{DA}}^{0}\right)^{2} *(\mathrm{FC}) \\
& \left(\mathrm{T}_{\mathrm{DA}}^{0}\right)^{2}=\mathrm{k}_{\mathrm{ET}}^{0} /\left[\left(4 \pi^{2} / \mathrm{h}\right)^{*}(\mathrm{FC})\right]
\end{aligned}
$$

where FC will remain constant. We can then determine the electron transfer rate constant using the given values:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{ET}}=\left(4 \pi^{2} / \mathrm{h}\right)^{*}\left(\mathrm{~T}_{\mathrm{DA}}\right)^{2} *(\mathrm{FC})=\left(4 \pi^{2} / \mathrm{h}\right)^{*}\left(\mathrm{~T}_{\mathrm{DA}}{ }^{0}\right)^{2} \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]^{*}(\mathrm{FC}) \\
& =\left(4 \pi^{2} / \mathrm{h}\right)^{*}\left\{\mathrm{k}_{\mathrm{ET}} /\left[\left(\left(4 \pi^{2} / \mathrm{h}\right) *(\mathrm{FC})\right]\right\} * \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]^{*}(\mathrm{FC})\right. \\
& =\mathrm{k}_{\mathrm{ET}} 0 * \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]
\end{aligned}
$$

a) for electron transfer over $30 \AA$ through covalent bonds:

$$
\mathrm{k}_{\mathrm{ET}}=10^{13} \mathrm{~s}^{-1} * \exp \left[-0.7 \AA^{-1} *(30 \AA-3.6 \AA)\right]=9.4 * 10^{4} \mathrm{~s}^{-1}
$$

b) for electron transfer over $30 \AA$ through a protein $\left(\beta=1.4 \AA^{-1}\right)$

$$
\mathrm{k}_{\mathrm{ET}}=10^{13} \mathrm{~s}^{-1} * \exp \left[-1.4 \AA^{-1} *(30 \AA-3.6 \AA)\right]=8.9^{*} 10^{-4} \mathrm{~s}^{-1}
$$

4) Given that electron transfer rate for used pathway is 100 times faster than unused pathway $\left(\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=1 / 100\right), \beta=1.4 \AA^{-1},-\Delta \mathrm{G}^{0}=0.2 \mathrm{eV}, \lambda=0.2 \mathrm{eV}$, and $\mathrm{kT}=0.026 \mathrm{eV}$
a) assume difference in rate constant is due to difference in distance, find $\Delta \mathrm{R}$:
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2}\left(\mathrm{FC} \mathrm{C}^{\prime}\right)\right] /\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}(\mathrm{FC})\right]$
where $\mathrm{FC}^{\prime}=\mathrm{FC}$
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2} /\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}=\left\{\left(\mathrm{T}_{\mathrm{DA}}{ }^{0}\right)^{2 *} \exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)\right]\right\} /\left\{\left(\mathrm{T}_{\mathrm{DA}}{ }^{0}\right)^{2} * \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]\right\}$
$=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)\right] / \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)+\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}\right)\right]$
$=1 / 100$
$-\ln (100)=-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}\right)$
$\mathrm{R}^{\prime}=\ln (100) / \beta+\mathrm{R}=13.3 \AA$
$\Delta \mathrm{R}=3.3 \AA$
b) assume difference in rate constant is due to difference in driving force, find $\Delta(-\Delta \mathrm{G})$: $\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2}\left(\mathrm{FC}^{\prime}\right)\right] /\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}(\mathrm{FC})\right]$
where $\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}=\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}} \\
& =\left\{(4 \pi \lambda \mathrm{kT})^{-1 / 2} * \exp \left[-\left(-\Delta \mathrm{G}^{0^{\prime}}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]\right\} /\left\{(4 \pi \lambda \mathrm{kT})^{-1 / 2} \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]\right\} \\
& \text { since }-\Delta \mathrm{G}^{0}=0.2 \mathrm{eV}=\lambda, \\
& =\exp \left[-\left(-\Delta \mathrm{G}^{0^{\prime}}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]=1 / 100 \\
& -\ln (100)=-\left(-\Delta \mathrm{G}^{0^{\prime}}-\lambda\right)^{2} /(4 \lambda \mathrm{kT}) \\
& (4 \lambda \mathrm{kT})^{*} \ln (100)=\left(-\Delta \mathrm{G}^{0^{\prime}}-\lambda\right)^{2} \\
& \left(\Delta \mathrm{G}^{0^{\prime}}\right)^{2}+2 \lambda\left(\Delta \mathrm{G}^{0^{\prime}}\right)+\lambda^{2}-(4 \lambda \mathrm{kT}) * \ln (100)=0 \\
& \left(\Delta \mathrm{G}^{0^{\prime}}\right)^{2}+0.4\left(\Delta \mathrm{G}^{0^{\prime}}\right)-0.056=0
\end{aligned}
$$

use quadratic equation to get
$\Delta \mathrm{G}^{0^{+}}=0.11 \mathrm{eV}$ or -0.51 eV
thus
$-\Delta \mathrm{G}^{0^{\prime}}=-0.11 \mathrm{eV}$ or 0.51 eV
so
$\Delta(-\Delta \mathrm{G})=-\Delta \mathrm{G}^{0^{\prime}}-\left(-\Delta \mathrm{G}^{0}\right)=-0.11 \mathrm{eV}-(0.2 \mathrm{eV})=-0.31 \mathrm{eV}$
or
$\Delta(-\Delta \mathrm{G})=-\Delta \mathrm{G}^{0^{\prime}}-\left(-\Delta \mathrm{G}^{0}\right)=0.51 \mathrm{eV}-(0.2 \mathrm{eV})=0.31 \mathrm{eV}$
c) assume difference in rate constant is due to difference in reorganization energy, find $\Delta \lambda$:
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2}\left(\mathrm{FC}^{\prime}\right)\right] /\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}(\mathrm{FC})\right]$
where $\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}=\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}} \\
& =\left\{\left(4 \pi \lambda^{\prime} \mathrm{kT}\right)^{-1 / 2} * \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda^{\prime}\right)^{2} /\left(4 \lambda^{\prime} \mathrm{kT}\right)\right]\right\} /\left\{(4 \pi \lambda \mathrm{kT})^{-1 / 2} * \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]\right\} \\
& =\left\{(\lambda ^ { \prime }) ^ { - 1 / 2 } \operatorname { e x p } \left[-\left(-\Delta \mathrm{G}^{0}-\lambda^{\prime}\right)^{)^{2} /\left(4 \lambda^{\prime} \mathrm{kT}\right)\right]\right\} /\left\{(\lambda)^{-1 / 2} * \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]\right\}}\right.\right. \\
& \text { since }-\Delta \mathrm{G}^{0}=0.2 \mathrm{eV}=\lambda, \\
& =\left(\lambda^{\prime} / \lambda\right)^{-1 / 2} * \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda^{\prime}\right)^{2} /\left(4 \lambda^{\prime} \mathrm{kT}\right)\right]=1 / 100 \\
& -\ln (100)=-{ }^{1} / 2^{*} \ln \left(\lambda^{\prime} / \lambda\right)-\left[\left(-\Delta \mathrm{G}^{0}-\lambda^{\prime}\right)^{2} /\left(4 \lambda^{\prime} \mathrm{kT}\right)\right] \\
& -\left(4 \lambda^{\prime} \mathrm{kT}\right) * \ln (100)=-\left(2 \lambda^{\prime} \mathrm{kT}\right)^{*} \ln \left(\lambda^{\prime}\right)+\left(2 \lambda^{\prime} \mathrm{kT}\right)^{*} \ln (\lambda)-\left(-\Delta \mathrm{G}^{0}-\lambda^{\prime}\right)^{2} \\
& \lambda^{\prime} *\left[(4 \mathrm{kT})^{*} \ln (100)\right]=\lambda^{\prime} \ln \left(\lambda^{\prime}\right)^{*}[2 \mathrm{kT}]-\lambda^{\prime} *\left[(2 \mathrm{kT})^{*} \ln (\lambda)\right]+\left[\left(\Delta \mathrm{G}^{0}\right)^{2}+2 \lambda^{\prime} \Delta \mathrm{G}^{0}+\left(\lambda^{\prime}\right)^{2}\right] \\
& 0=\left(\lambda^{\prime}\right)^{2}+\lambda^{\prime} *\left[2 \Delta \mathrm{G}^{0}-(2 \mathrm{kT})^{*} \ln (\lambda)-(4 \mathrm{kT})^{*} \ln (100)\right]+\lambda^{\prime} \ln \left(\lambda^{\prime}\right) *[2 \mathrm{kT}]+\left(\Delta \mathrm{G}^{0}\right)^{2} \\
& =\left(\lambda^{\prime}\right)^{2}+\lambda^{\prime} *[-0.4+0.084-0.48]+\lambda^{\prime} \ln \left(\lambda^{\prime}\right)^{*}[0.052]+0.04
\end{aligned}
$$

$$
=\left(\lambda^{\prime}\right)^{2}+\lambda^{\prime} *[-0.796]-\lambda^{\prime} \ln \left(\lambda^{\prime}\right) *[0.052]+0.04
$$

solving numerically for λ^{\prime} :
$\lambda^{\prime}=0.76 \mathrm{eV}$
thus:
$\Delta \lambda=0.56 \mathrm{eV}$
5) Given $\mathrm{R}=20 \AA, \mathrm{k}_{\mathrm{ET}}=200 \mathrm{~s}^{-1}$, and $\beta=1.4 \AA^{-1}$, find k_{ET} ' when R is increased to $25 \AA$:
in general
$\mathrm{k}_{\mathrm{ET}}=\left(4 \pi^{2} / \mathrm{h}\right) *\left(\mathrm{~T}_{\mathrm{DA}}\right)^{2} *(\mathrm{FC})$
where
$\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}=\left(\mathrm{T}_{\mathrm{DA}}{ }^{0}\right)^{2} * \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]$
$(\mathrm{FC})=(4 \pi \lambda \mathrm{kT})^{-1 / 2} \exp \left[-\left(-\Delta \mathrm{G}^{0}-\lambda\right)^{2} /(4 \lambda \mathrm{kT})\right]$
using the following ratio
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2}\left(\mathrm{FC}^{\prime}\right)\right] /\left[\left(4 \pi^{2} / \mathrm{h}\right)\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}(\mathrm{FC})\right]$
since FC has no dependence on R , and all other variables are held constant
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime} / \mathrm{k}_{\mathrm{ET}}=\left(\mathrm{T}_{\mathrm{DA}}{ }^{\prime}\right)^{2} /\left(\mathrm{T}_{\mathrm{DA}}\right)^{2}=\left\{\left(\mathrm{T}_{\mathrm{DA}}{ }^{0}\right)^{2} * \exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)\right]\right\} /\left\{\left(\mathrm{T}_{\mathrm{DA}}{ }^{0}\right)^{2} * \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]\right\}$ $=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)\right] / \exp \left[-\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}_{0}\right)+\beta\left(\mathrm{R}-\mathrm{R}_{0}\right)\right]=\exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}\right)\right]$
thus, the new rate constant can be determined
$\mathrm{k}_{\mathrm{ET}}{ }^{\prime}=\mathrm{k}_{\mathrm{ET}} * \exp \left[-\beta\left(\mathrm{R}^{\prime}-\mathrm{R}\right)\right]=200 \mathrm{~s}^{-1} * \exp [-1.4 \AA *(25 \AA-20 \AA)]=0.18 \mathrm{~s}^{-1}$

