
Chapter 9 Solutions 
 
1)  A monodentate carboxylate is a σ-only donor, whereas a cysteinate is a σ- and π-donor.  
Mutating a cysteine to an aspartate will eliminate the band (~600 nm) in the optical spectrum 
associated with ligand-to-metal charge-transfer and probably ipsochromically shift the d-d 
transition band (because RCO2

– is not as weak field as RS–). 
 
2)  Cytochrome c contains a coordinatively-saturated, Oh iron in the active site and does not 
change coordination number during redox processes.  In comparison, myoglobin alternates 
between five- and six-coordinate depending on redox state.  Consequently, the ruthenium-
modified myoglobin will have an higher reorganization energy and thus a lower rate constant for 
electron transfer. 
 
3)  The maximum rate constant for electron transfer, kET

0, at van der Waals contact (R0 = 3.6 Å) 
through covalent linkages (β = 0.7 Å–1) is 1013 s–1.  Using this, one can express TDA

0 as follows: 
 
 kET

0 = (4π 2/h)*(TDA
0)2*(FC)  

(TDA
0)2 = kET

0 / [(4π 2/h)*(FC)] 
where FC will remain constant.  We can then determine the electron transfer rate constant 
using the given values: 
 
kET = (4π 2/h)*(TDA)2*(FC) =  (4π 2/h)*(TDA

0)2*exp[–β(R–R0)]*(FC) 
= (4π 2/h)*{kET

0 / [(4π 2/h)*(FC)]}*exp[–β(R–R0)]*(FC) 
= kET

0 * exp[–β(R–R0)] 
 
a)  for electron transfer over 30 Å through covalent bonds: 
kET = 1013 s–1 * exp[–0.7 Å–1 * (30 Å – 3.6 Å)] = 9.4*104 s–1

 
b)  for electron transfer over 30 Å through a protein (β = 1.4 Å–1) 
kET = 1013 s–1 * exp[–1.4 Å–1 * (30 Å – 3.6 Å)] = 8.9*10–4 s–1

 
  
4)  Given that electron transfer rate for used pathway is 100 times faster than unused pathway 
(kET’/kET = 1/100), β = 1.4 Å–1, –∆G0 = 0.2 eV, λ = 0.2 eV, and kT = 0.026 eV 
 
 a)  assume difference in rate constant is due to difference in distance, find ∆R: 
 kET’/kET = [(4π 2/h)(TDA’)2(FC’)] / [(4π 2/h)(TDA)2(FC)] 
 where FC’ = FC 
 
 kET’/kET = (TDA’)2/(TDA)2 = {(TDA

0)2*exp[–β(R’–R0)]} / {(TDA
0)2*exp[–β(R–R0)]} 

 = exp[–β(R’–R0)] / exp[–β(R–R0)] = exp[–β(R’–R0) + β(R–R0)] = exp[–β(R’–R)] 
 = 1/100 
 
 –ln(100) = –β(R’–R) 

R’ = ln(100)/β + R = 13.3 Å 
∆R = 3.3 Å 



b)  assume difference in rate constant is due to difference in driving force, find ∆(–∆G): 
 kET’/kET = [(4π 2/h)(TDA’)2(FC’)] / [(4π 2/h)(TDA)2(FC)] 

where (TDA’)2 = (TDA)2

 
kET’/kET  
= {(4πλkT)–1/2*exp[–(–∆G0’ – λ)2/(4λkT)]} / {(4πλkT)–1/2*exp[–(–∆G0 – λ)2/(4λkT)]} 
 
since –∆G0 = 0.2 eV = λ, 
= exp[–(–∆G0’ – λ)2/(4λkT)] = 1/100 
 
–ln(100) = –(–∆G0’ – λ)2/(4λkT) 
(4λkT)*ln(100) = (–∆G0’ – λ)2

(∆G0’)2 + 2λ(∆G0’) + λ2 – (4λkT)*ln(100) = 0 
(∆G0’)2 + 0.4(∆G0’) – 0.056 = 0 
 
use quadratic equation to get 
∆G0’ = 0.11 eV or –0.51 eV 
 
thus 
–∆G0’ = –0.11 eV or 0.51 eV 
 
so 
∆(–∆G) = –∆G0’ – (–∆G0) = –0.11 eV – (0.2 eV) = –0.31 eV 
 
or 
∆(–∆G) = –∆G0’ – (–∆G0) = 0.51 eV – (0.2 eV) = 0.31 eV 
 
c)  assume difference in rate constant is due to difference in reorganization energy, find 
∆λ: 
 

 kET’/kET = [(4π 2/h)(TDA’)2(FC’)] / [(4π 2/h)(TDA)2(FC)] 
where (TDA’)2 = (TDA)2

 
kET’/kET  
= {(4πλ’kT)–1/2*exp[–(–∆G0 – λ’)2/(4λ’kT)]} / {(4πλkT)–1/2*exp[–(–∆G0 – λ)2/(4λkT)]} 
= {(λ’)–1/2*exp[–(–∆G0 – λ’)2/(4λ’kT)]} / {(λ)–1/2*exp[–(–∆G0 – λ)2/(4λkT)]} 
 
since –∆G0 = 0.2 eV = λ, 
= (λ’/λ)–1/2*exp[–(–∆G0 – λ’)2/(4λ’kT)] = 1/100 

  
–ln(100) = –1/2*ln(λ’/λ) – [(–∆G0 – λ’)2/(4λ’kT)] 
–(4λ’kT)*ln(100) = –(2λ’kT)*ln(λ’) + (2λ’kT)*ln(λ) – (–∆G0 – λ’)2

λ’*[(4kT)*ln(100)] = λ’ln(λ’)*[2kT] – λ’*[(2kT)*ln(λ)] + [(∆G0)2 + 2λ’∆G0 + (λ’)2] 
 
0 = (λ’)2 + λ’*[2∆G0 – (2kT)*ln(λ) – (4kT)*ln(100)] + λ’ln(λ’)*[2kT] + (∆G0)2

= (λ’)2 + λ’*[–0.4 + 0.084 – 0.48] + λ’ln(λ’)*[0.052] + 0.04 



= (λ’)2 + λ’*[–0.796] – λ’ln(λ’)*[0.052] + 0.04  
  
  



solving numerically for λ’: 
 λ’ = 0.76 eV 
 
 thus: 
 ∆λ = 0.56 eV 
 
 
 
5)  Given R = 20 Å, kET = 200 s–1, and β = 1.4 Å–1, find kET’ when R is increased to 25 Å: 
 
 in general 
 kET = (4π 2/h)*(TDA)2*(FC) 
 
 where 
 (TDA)2 = (TDA

0)2*exp[–β(R–R0)] 
 (FC) = (4πλkT)–1/2*exp[–(–∆G0 – λ)2/(4λkT)] 
 
 using the following ratio 
 kET’/kET = [(4π 2/h)(TDA’)2(FC’)] / [(4π 2/h)(TDA)2(FC)] 
 
 since FC has no dependence on R, and all other variables are held constant 
 kET’/kET = (TDA’)2/(TDA)2 = {(TDA

0)2*exp[–β(R’–R0)]} / {(TDA
0)2*exp[–β(R–R0)]} 

 = exp[–β(R’–R0)] / exp[–β(R–R0)] = exp[–β(R’–R0) + β(R–R0)] = exp[–β(R’–R)] 
 
 thus, the new rate constant can be determined 
 kET’ = kET*exp[–β(R’–R)] = 200 s–1 * exp[–1.4 Å * (25 Å – 20 Å)] = 0.18 s–1


