

Many of the most successful inference and machine learning algorithms arise out of probabilistic modeling and analysis. If you want to learn the fundamentals of this discipline and see some of what you can do with it, this subject is the place to start.
6.008 provides a solid foundation for more advanced subjects that build on this framework of reasoning. As such, the subject is targeted at (and likely to strongly appeal to) students both across and beyond Course 6 (EECS).
Prereq: Calculus II (GIR) or permission of instructor
Units: 444, Institute Lab
Lecture: MW10 (32155) Lab: R24(TBA) and F1012(TBA)
Recitation: TR1 (34302) or TR2 (34302)
Introduces probabilistic modeling for problems of inference and machine learning from data, emphasizing analytical and computational aspects. Distributions, marginalization, conditioning, and structure; graphical representations. Belief propagation, decisionmaking, classification, estimation, and prediction. Sampling methods and analysis. Introduces asymptotic analysis and information measures. Substantial computational laboratory component explores the concepts introduced in class in the context of realistic contemporary applications. Students design inference algorithms, investigate their behavior on real data, and discuss experimental results.
New in Fall 2016: 6.008 can be used in place of 6.01, 6.02, 6.03 as Intro to EECS.
EECS students in 62 program can use 6.008 as one of their EE or CS foundation subjects. All EECS students can use 6.008 as one of their math elective or free elective subjects.
All EECS students may petition to take 6.008 instead of 6.042 as one of their math elective subjects and to use it as a prerequisite for more advanced subjects that require 6.042. NOTE: the petition must be filed and approved before the add date in Fall 2016. The goal is to verify that you either have sufficient background in constructing formal proofs (an essential component of 6.042 that more advanced subjects rely on) or that you are committed to acquiring such background on your own.
6.008 can also be used by MEng students as one of their restricted elective subjects. As usual, no double counting is allowed.
We currently offer several graduate subjects in inference and machine learning that can be taken as AUS subjects, including 6.437 Inference and Information, 6.438 Algorithms for Inference, and 6.867 Machine Learning.