Problem 1

The device drawn below is biased as shown, and a capacitance-voltage (C-V) measurement is taken. The area of the device is 10^{-6} cm2. Assume the electrostatic potential in the n+ silicon region, $\varphi_{n^+}=550$ mV.

A plot of $(1/C)^2$ as a function of the DC voltage, V, where C is the capacitance is shown below. The device is in reverse bias. The slope, S, is -4.8×10^{26} F$^{-2}$ V$^{-1}$.
a) Derive an expression for the doping, N_a, in the p-type region in terms of the slope S, shown in the plot, and other known parameters (e.g. constants like $q \varepsilon_{Si}$, the device area).

b) Assume now that $N_a = 10^{16} \text{ cm}^{-3}$. Estimate the DC voltage V' where the slope of the plot of $(1/C)^2$ vs. voltage changes, as seen in the graph.

Problem 2

A metal-oxide-semiconductor (MOS) device is pictured below. T_{ox} is 15nm. Assume $\varphi_{n^+}=0.55\text{V}$, and that N_a in the p region is 10^{17} cm^{-3}.

a) Find the threshold voltage of this device.

b) What applied bias leads to a sheet charge density in the inversion layer, Q_N, of -10^6 C/cm^2?
c) What is the value of E_{ox}, the field in the oxide, when the charge on the gate, $Q_G = 10^{-6}$ C/cm2?

Problem 3

Shown below is a capacitance-voltage plot for an MOS capacitor. The gate is n+, therefore you can assume its potential is 550mV. The silicon dioxide thickness is 15nm, and the body is doped with some concentration of acceptors, N_a.

![Capacitance-Voltage Plot]

a) Determine the threshold voltage, V_T, and the flatband voltage, V_{FB}, on the C-V plot.

b) Specify the range of voltages where the MOS capacitor is in inversion, depletion, and accumulation.

c) Calculate the doping concentration in the body, N_a, from the given information.

d) Now assume the gate is doped p+, so the potential of the gate is -550mV. Sketch the C-V, labeling V_T and V_{FB}.

Problem 4

It is sometimes useful in analog circuits to use a transistor biased in triode as a voltage controlled resistor. Use the following parameters to design a p-channel MOSFET with a resistance of 100KΩ.

$\mu pCox=25\mu A/V^2$ $V_{tp}=-1V$ $V_{GS}=-1.2V$ $V_{BS}=0V$

a) If the device has a width of 10μm, what is the necessary length?

b) What is the necessary width to get a 10KΩ resistor, if the length is 5μm?
Problem 5

Hafnium dioxide (HfO$_2$, $\varepsilon = 25$) is an attractive replacement for silicon dioxide as a gate dielectric due to its high dielectric constant.

Consider an n-channel MOSFET. The channel length, $L = 2\mu m$, the width, $W = 30\mu m$, the electron mobility is $\mu_n = 300$ cm2V$^{-1}$s$^{-1}$ and the substrate doping is $N_n = 10^{17}$ cm$^{-2}$. Assume the gate is n+ silicon, so its potential is 550mV.

a) What thickness of HfO$_2$ is needed for $V_{Th} = 0.5$ V?

b) Find the backgate effect parameter, γ_n for the hafnium dioxide gate insulator thickness from (a).

c) If $I = 5\mu A$, what is V_{GS}? Assume saturation. What is the minimum drain voltage to ensure saturation?