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ABSTRACT 
Most microfluidic systems rely on one of two manners of 

fluid transport: pressure-driven or electrokinetically-driven 
flow. This investigation focuses on describing these flows in 
microfabricated channels and small diameter capillary tubes.  
Flow characterization is accomplished by interrogation of 
micron-scale fluid regions through a powerful, non-intrusive 
flow imaging technique. Interesting phenomena have been 
observed from these detailed examinations.  Our results are 
presented in conjunction with an evaluation of mechanisms that 
potentially explain observed deviations from the Helmholtz-
Smoluchowski equation.  In particular, we show that observed 
perturbations of electrokinetic flow in open capillaries might be 
caused by induced pressure gradients.   We also show how 
these induced pressure gradients may globally perturb the flow 
in an electrokinetically-driven microfluidic system. 

 
 
NOMENCLATURE 
Symbol  Definition  Units (SI) 
 
E electric field    V m-1 
Ex axial electric field  Vm-1 
F  Faraday constant (Nae) C mol-1 
I0 Modified Bessel function        
L length of capillary  m 
P Pressure    Pa 
Q Volumetric flow rate  m3 s-1 
R  universal gas constant  J mol-1 K-1 
S source term   W m-3 
T  temperature    K 
T0 wall temperature  K 

U electroosmotic or  m s-1 

 electrophoretic velocity  
Uo electrophoretic velocity m s-1 
                     at T0  
c0  ion concentration    mol m-3   
dV differential volume    m3 
k  thermal conductivity   W m-1 K-1 
r radial dimension   m 
r0 capillary inner radius   m 
u  velocity distribution  m s-1 
x axial dimension  m 
x0 axial position of change m 
                 in wall zeta potential   
y distance from surface  m 
z  charge number 
ε  permittivity    C V-1 m-1 
φ electric potential    V 
λD Debye length   m 
µ  viscosity    Pa s 
µ0 viscosity of water at T0 Pa s 
ρE electric charge density  C m-3 

ρ  resistivity   ohm m 

ζ  zeta potential  V 
ζEO  electroosmotic zeta potential  V 
ζEP  electrophoretic zeta potential  V 
 
 
INTRODUCTION 

Originally emerging from the field of analytical chemistry, 
micro total analysis systems (µTAS) have recently enjoyed 
wide interest.  Micro total analysis systems and other 
microfluidic systems rely on both pressure and electrokinetic 



mechanisms for fluid transport.  Complicated relationships can 
arise between the physical characteristics of the microchannels 
and the behavior of the multi-component fluids flowing through 
the channels.  These relationships have not been systematically 
studied and are not yet completely understood.  In practice, 
researchers are forced to rely on the use of trial and error in the 
design of miniaturized fluidic systems. 

In this investigation, we employed a caged fluorescence 
imaging technique in an effort to determine the mechanisms 
that contribute to the fluid flow in microfluidic systems.  Aided 
with characterizations of relatively simple flows, we endeavor 
to accurately predict the flow behavior in more complicated 
flows and geometries. 

 
 

BACKGROUND 
Electrokinetic transport refers to the combination of 

electroosmotic and electrophoretic transport. For a historical 
review of electrokinetic theory, see Burgreen and Nakach 
(1964).    Included below is a brief description of each type of 
transport. 

 
 

Electroosmosis 
Electroosmosis refers to the bulk movement of an aqueous 

solution past a stationary solid surface, due to an externally 
applied electric field.   Electroosmosis requires the existence of 
a charged double-layer at the solid-liquid interface.  This 
charged double layer results from an attraction between bound 
surface charges and ions in the passing fluid.  In glass 
capillaries, surface silanol groups become deprotonated and, 
therefore, are negatively charged.  This negatively charged 
surface attracts positive ions present in the flow.  In the 
situations addressed in this paper, only a very thin layer near 
the wall has a net charge.   

Rice and Whitehead (1965) give a complete analysis of 
electroosmotic flow in round capillaries; here we quote only a 
few significant results to which we will refer later.  At 
equilibrium, a Boltzmann distribution of the charges in the 
solution will exist (Probstein, 1994) with the charge density 
distribution represented by:  
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The potential field is determined by solving the Poisson-
Boltzmann equation, resulting in the following charge density, 
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In our experiments, λD/ro is approximately 10-4; thus the double 
layer is very thin.  The equation of motion for steady, low 
Reynolds number, incompressible flow is: 
 

                          PE ∇+−=∇ Eu ρµ 2 .                             (3) 

 
In the limit of a small Debye length, λD, solving Eq. (3) yields 
the Helmholtz-Smoluchowski equation for the electroosmotic 
velocity. 
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The Helmholtz-Smoluchowski equation predicts a “plug-
like” velocity profile when the Debye length is much less than 
the capillary diameter. The electroosmotic velocity, U, is 
approximately 0.1 mm/sec, when ζ = 0.1 V, Ex = 100 V/cm, 
and µ is the viscosity of water (Probstein, 1994).   

 
 

Electrophoresis 
Electrophoresis describes the motion of a charged surface 

submerged in a fluid under the action of an applied electric 
field. Considering the case of a charged dye molecule, it can be 
shown (Probstein, 1994) that the electrophoretic velocity of the 
dye is again described by the Helmholtz-Smoluchowski 
equation.  
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The electroosmotic zeta potential is a property of the capillary 
surface while the electrophoretic zeta potential is a property of 
the charged dye.  In general, these two zeta potentials will not 
be equal. 

It is important to note that electroosmosis results in a net 
mass transfer of the aqueous solution; whereas, electrophoresis 
causes movement of charged particles or molecules through a 
stationary solution.  For a net-neutral solution of charged 
molecules, electrophoresis will not result in bulk motion of the 
solvent.  Also note that both derivations shown above result in 
a velocity that is not a function of the radial position; hence, it 
is termed a “plug-like” flow. 

 
 

EXPERIMENTAL DETAILS 
Two different types of microchannels were used in this 

investigation.  Initially, we used rectangular silicone 
microchannels.  We then began investigating flows within 
round glass capillaries with an internal diameter of 100 µm.  
The capillaries were employed in an effort to isolate 
unexplained flow phenomena observed in our initial silicone 
microchannel investigation.  

To create the silicone channels, silicon microchannel 
molds were fabricated as “negative” masters using standard 



photolithography.  An STS deep reactive ion etch (DRIE) was 
used to create raised rectangular structures (inverted channels) 
with dimensions of 10-200 µm in width, 5 cm in length and 40 
µm in height.  An RTV silicone (Dow Corning Sylgard 184) 
was used to form positive replicas of the silicon structures 
(Effenhauser et al.,  1997).   A photograph of a sealed replica is 
shown in Fig. 1.  The elastomer channels were sealed with 
either glass microscope slides or elastomer coated glass 
microscope slides. 

 
 

 

Figure 1.  Photograph of the elastomer device with three 
test microchannels.  The circles are the injection wells and 
the squares are used to study pressure-driven flow in a 
sudden expansion. 

 
Our experimental approach utilized caged fluorescent dyes 

to image the flows.  These dyes were activated (uncaged) by a 
UV laser beam and tracked by fluorescence imaging, see Fig. 2,  
(Paul et al., 1998).  In contrast to standard methods injecting 
dye, this visualization technique allows definition of narrow, 
fluorescent regions at virtually any location along the channel.  
Specifically, this allows for a precise definition of a small 
fluorescent region and therefore an improved determination of 
the dye profile.  Therefore, this caged fluorescence technique 
has advantages over injection methods that must transport the 
dye from the location of injection to the region of interest.  

The caged dyes were purchased from Molecular Probes 
Inc. and used in millimolar quantities.  For the pressure-driven 
studies, a caged fluorescein was dissolved in distilled  

 

 

UV pulse initiates dye line

time evolved dye  

Figure 2.  Top:  Schematic of the experiment.  The Nd:YAG 
laser is used to uncage the dye and a Microblue 473 nm 
laser is used to excite the fluorescence.  Bottom:  
Illustration of the uncaging process.  The uncaging laser 
defines the starting fluorescent fluid volume. 

 
water.  For the electrokinetic studies, a caged rhodamine was 
dissolved in Tris-EDTA buffer.   The dyes are negatively 
charged when uncaged and may be either charged or uncharged 
when caged.  When caged, the dye solution is non-fluorescent.  
Upon photo-activation of a UV light illuminated volume, the 
protecting group is cleaved and the dye becomes fluorescent.  
Approximately 100 µJ (per pulse) of 355 nm light from a 
pulsed Nd:YAG laser uncaged the dye.  The uncaged region 
extended roughly 20 µm along the length of the channel and 
spanned across its full width (Fig. 2).  The laser beam was 
focused using a UV microscope objective that defined a sharp 
start zone. A continuous wave Microblue diode pumped laser at 
473 nm (Uniphase) was used for fluorescence excitation after 
activation (Fig. 2).  Fluorescence images of the molecules 
diffusing and moving in the local flow were collected using a 
microscope objective and a video-rate, interlaced camera 
(Texas Instruments MC-780PH). 

 
 



RESULTS 
We have investigated transport in microfluidic systems and 

present experimental studies of pressure-driven and 
electrokinetic flows.  We also present numerical simulations 
which were performed using the NetFlow module in Memcad 
(MEMCAD, 1998).  The NetFlow module employs a three-
dimensional finite element based tool to solve the Navier-
Stokes equations.  We note that the pressure-driven flow data 
show good agreement between the preliminary experiments and 
the simulations.  Measurements of the electrokinetic flows, 
however, reveal deviations from simple theory.  

The evolution of a pressure-driven fluorescent profile is 
compared to a corresponding sequence of simulations in Fig. 3.  
The agreement is good, but note that there is dye retention near 
the walls that is not duplicated in the numerical simulations.  
This dye retention could be due to surface roughness.   Atomic 
force microscopy indicates that the silicone channel has an 
RMS surface roughness of ~ 7 nm.   

 

33 ms
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Figure 3.  Experimental (left) and simulated (right) pressure-
driven flow entering a sudden expansion in an elastomer 
structure.  The channel entering the expansion is 
rectangular (100 µm wide and 40 µm deep) 

 
The evolution of an electrokinetically-driven fluorescent 

profile in a round, fused-silica capillary is shown in Fig. 4. 
These images reveal that the velocity profile appears to be 
constant across the channel, in agreement with Eq. (4).  Figure 
5 shows electrokinetic flow in a DBwax-coated (polyethylene  

 

 

Figure 4.  Electrokinetic flow in a 75 µm diameter fused-
silica capillary exhibiting a plug-like velocity profile.   
Applied field strength was 350 volts/cm. The numbers with 
each image correspond to the time in milliseconds after the 
uncaging pulse. 

 

Figure 5. Electrokinetic flow in DBwax-coated (polyethylene 
glycol), 100 µm diameter fused-silica capillary.  The wax-
coated capillaries were purchased from J&W Scientific. 
Applied field strength was 245 volts/cm.  The numbers with 
each image correspond to the time in milliseconds after the 
uncaging pulse. 

 
glycol) capillary.  The wax coating is used to suppress 
electroosmotic flow, so that the movement of charged particles 
in the flow is due to electrophoresis only.  However, these 
images show a pronounced parabolic velocity profile in the 
direction opposing the electric field.  This profile does not 
agree with Eq. (5), and would be difficult to image without a 
high-resolution measurement technique such as caged 
florescence imaging.  Note that we observed no motion of the 
dye without application of the electric field, verifying that there 
was no externally applied pressure gradient.  Parabolic 
components to the electrokinetic velocity profile have 
previously been observed in capillaries (Paul et al., 1998) and 
in microchannels (St. John et al., 1998). 

33  msec. 

133  msec. 

233  msec. 

333  msec. 



DISCUSSION 
In Fig. 4, we see that the imaged velocity profiles for 

electrokinetic flow are in good agreement with Eq. (4). The 
flow is a combination of electroosmosis and electrophoresis, 
and the theory outlined above shows that both components 
yield a flat profile.  Figure 5, however, shows significant 
deviations from a flat profile.  This flow suggests a velocity 
profile similar to that observed in a pressure-driven flow.    

In the following sections, we explore two mechanisms that 
potentially explain this observed departure from plug-like flow: 
variations in viscosity due to temperature gradients, and 
induced pressure gradients caused by a non-uniform wall 
potential (i.e. non-uniform wax coating in the case of Fig. 5). 

 
 

Variation of viscosity 
In this section, we examine the possibility that heat 

generation within the capillary could cause the electrophoretic 
velocity profile to deviate from plug-like. To this end, we 
investigate the temperature, viscosity and corresponding 
velocity distributions across the capillary.   

In cylindrical coordinates, we write the temperature 
governing equation for our system as: 
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The source term, S, has units of power per unit volume.  In this 
analysis, we assume ρ remains a constant (or at least is not a 
strong function of temperature) based on the experimentally 
determined fluid-filled capillary resistance and capillary 
dimensions.  This empirically determined resistivity agrees 
closely with those tabulated in the literature (Masliyah 1994). 
Integrating twice and applying the boundary conditions of finite 
temperature at the centerline and constant wall temperature, To, 
we obtain the temperature distribution 
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As an initial approximation, we assume that the fluid within our 
capillary has the same thermal properties and viscosity as 
water. As such, we have chosen to model the viscosity as a 
function of temperature, by:  
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with To = 293.15K and the constants given by a = -1.94,           
b = -4.80, and c = 6.74, as suggested by Reid  (1987).   

In order to relate the temperature-dependent viscosity to 
the electrophoretic velocity profile within the capillary, we 
return to our analysis of electrophoresis.  Utilizing Eq. (5) and 
neglecting the temperature dependence of ε, ζ, or Ex, we arrive 
at: 
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The predicted velocity profiles for both an open capillary 
and a DBwax-coated capillary each show an expected radial 
velocity variation of less than 0.2% (Fig. 6).  The radial 
velocity distribution is parabolic in nature, but its magnitude is 
too small to explain the dye profiles seen in Fig. 5.  To obtain a 
significant radial variation in the electrophoretic velocity, one 
would need to increase the field strength or the buffer 
concentration considerably.  Our temperature variation model 
and, hence these conclusions, are in close agreement with those 
presented by Grushka et al. (1989).  
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Figure 6. Electrophoretic velocity distribution for an open 
capillary and a DBwax-coated capillary 

 
From this analysis, we conclude that the viscosity and, 

therefore, velocity do not vary significantly across the capillary 
for the prescribed small-bore capillary parameters, buffer 
concentrations, and field strengths.  Therefore, Joule heating 
induced velocity variation does not appear to be a feasible 
mechanism for the observed deviations from plug-like flow.  

 
 

Induced Pressure Gradients 
In deriving Eq.(4), the pressure gradient term was 

neglected because there were no externally applied pressure 
gradients.  However, this expression will not be correct if the 
electrokinetic transport induces a pressure gradient.  We now 
explore how the electrokinetic flow could potentially induce 



pressure gradients.   If we take the divergence of Eq. (3), and 
apply continuity for the fluid, ( ) 0=⋅∇ u , we derive the 
following expression.  

                      ( ) EEP ρρ EE ⋅∇+∇⋅=∇2           (10) 

Equation (10) demonstrates how the pressure field evolves 
from gradients in the charge density and applied field.  
Referring to Eq. (2), we see that the first term on the right hand 
side of Eq. (10) will be non-zero if the wall potential changes in 
the axial direction.  Nonuniformities in the wall potential could 
exist due to contamination in the capillary, variations in wall 
coatings, or gradients in the buffer pH.  Using classical 
techniques for solving Poisson’s equation (e.g. Green’s 
functions), it is possible to develop a general solution to Eq. 
(10) for an arbitrary zeta potential distribution along the wall of 
a cylindrical capillary.  In this paper, a direct method will be 
used to solve for the pressure field in a capillary with a wall 
potential as shown in Fig. 7.  
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Figure 7.  Schematic of capillary with step change in wall 
potential.  The anticipated velocity profiles are also shown.   

 
Let us assume that the fluid velocity is only a function of 

radial position in both Region 1 and Region 2 shown in Fig. 7.  
Note that Region 1 describes a section of the capillary with zero 
wall potential; whereas, Region 2 has a finite wall potential. In 
other words, we will assume that axial velocity gradients are 
confined to a vanishingly small region near the discontinuity in 
wall potential.  With this assumption, the volumetric flow rates 
in regions one and two are shown below. 
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We consider the case where the pressure at either end of the  

capillary is a known reference value (i.e. atmospheric pressure).  
For an incompressible liquid, the volumetric flow rates must be 
the same in regions 1 and 2.  Furthermore, we know that the 
pressure is continuous and piecewise linear since we assumed 
that the velocity profile does not vary axially in either region 
(i.e. the pressure gradient must be constant in both regions).  
Therefore, we arrive at the following expression for the 
pressure in the capillary, where x is the axial position and xo is 
the axial location of the discontinuity in wall potential. 
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Figure 8.  Non-dimensional pressure in a capillary with a 
step change in wall potential.  
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The pressure field corresponding to Fig. 7 is plotted in Fig. 

8.  We see that the pressure gradient is constant in each section 
and acts to ensure that the mass flow rates are equal in each 
region.  Figure 9 shows the predicted velocity profiles in 
regions 1 and 2.  The velocity in the first section is due to 
pressure alone, since the wall potential there is zero. The 
velocity profile in the second section is simply a superposition 
of the flat electroosmotic profile and the Poiseuille profile due 
to the induced pressure gradient.   The pressure gradient in 
each region is readily calculated from Eq. (12).  The velocity 
profiles in Fig. 9 were also shown schematically in Fig. 7. 
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Figure 9.  Radial velocity profiles in region 1 and region 2. 

 
To understand the solution qualitatively, one can imagine 

that the electroosmotic flow in Region 2 “pulls” the flow in 
Region 1.  In other words, the electroosmotic movement of 
liquid in Region 2 tends to create suction at the interface 
between the two regions.  Hence, the pressure drops at the 
interface until the mass flow rates in each region are equal. 
Note that the pressure-driven component subtracts from the 
electroosmotic flow in Region 2 while only pressure-driven 
flow is present in Region 1.  The analytically calculated 
velocity profiles also agree qualitatively with the numerical 
simulation shown in Fig. 10 (MEMCAD, 1998).  The 
simulation confirms that axial gradients in the velocity field are 
confined to a region less than a single diameter from the wall 
potential discontinuity.    

Superpositions of Eq. (12) can be used to find the pressure 
field caused by one or many small regions of zero wall 
potential.  This is then a model of a “dirty” silica capillary.  
Figure 11 demonstrates the nondimensional pressure field in a 
capillary with three “dirty” regions, each covering 1% of the 
capillary’s length.  

Note that the pressure gradients in the clean regions are 
identical and that the localized discontinuities in wall potential 
perturb the flow everywhere.  Equation (12) can also be 
superposed to find the pressure field in a coated capillary (zero 
wall potential) with small “clean” regions where the wall 

 

 

Figure 10.  Simulation of flow in a capillary with a step 
change in wall potential. 
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Figure 11.  Nondimensional pressure field in a capillary 
with three “dirty” spots 

 
potential is non-zero. Figure 12 shows the resulting velocity 
profile in the coated regions, for various amounts of exposed 
(uncoated) capillary.  The induced pressure gradient model 
presents a rational explanation of the flow imaged in Fig. 5, as 
it admits a parabolic profile for reasonable variations in wall 
potential. 
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Figure 12.  Velocity profile in a coated region of a wax 
coated capillary with small regions uncoated.  The wax 
coating acts to prevent electroosmotic flow. 

 
CONCLUSIONS 

We have imaged pressure-driven and electrokinetically-
driven flows in silicone microchannels and silica capillaries 
using a powerful caged fluorescence technique.  The pressure-
driven flows agree with theory and numerical simulations.  
Simple theory predicts that the electrokinetic flows should 
display uniform (plug-like) velocity profiles.  However, in 
some cases, we observe large parabolic-like components to the 
electrokinetic velocity profiles.  

We explored two mechanisms in an attempt to explain the 
observed velocity profiles: viscosity variations and induced 
pressure gradients.  We have demonstrated that Joule heating 
and the subsequent temperature and viscosity gradients do not 
adequately explain the observed parabolic velocity profile, but 
that induced pressure gradients are a possible explanation.  An 
important consequence of the induced pressure gradient 
analysis is that small regions of non-uniform wall potential 
create pressure gradients everywhere in the flow.  This 
conclusion has important implications for those wishing to 
build lab-on-a-chip devices, since pressure gradients tend to 
increase the dispersion of sample packets in the flow.  We are 
currently performing experiments that  investigate the proposed 
induced pressure gradient mechanism.  
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