

8.02 - ESG Independent Study Spring 2005

Unit 5: Mathematical Appendix

Those with experience in 18.03 techniques or theory may recognize that since the separated equation for $f_n(\theta)$, given in Unit 5 as

$$0 = n(n + 1)f_n + \frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} f_n \right),$$

is a second order linear ordinary differential equation, and should have two linearly independent solutions in any interval not including $\sin \theta = 0$, in our case $0 < \theta < \pi$. The form of the solution presented, that is, a polynomial of degree n for integer $n \geq 0$, seems to disdain the other solution. To cut to the chase, the other solution can be shown to have an infinite power series solution which diverges as $\sin \theta \rightarrow 0$, and so is unacceptable.

For more detailed sources on the following, consult any Differential Equations text; check the index under “Legendre’s Equation” or “Legendre Polynomials.” Another good source is Jackson’s “Classical Electrodynamics”; the page numbers change with edition, but either check the index or the back endpapers.

Before getting fancy, let’s “do the drill” in the simple case $n = 0$, in which case we find, more or less by inspection, a solution $f_{0,1} \equiv 0$ (the extra subscript will be 1 or 2, just to distinguish two independent solutions). Let’s do better, and integrate the above equation (with $n = 0$) to find

$$\begin{aligned} \sin \theta \frac{d}{d\theta} f_n &= -c_2 \\ \frac{d}{d\theta} f_n &= -c_2 \csc \theta \\ f_n &= c_2 \ln(\csc \theta + \cot \theta) + c_1. \end{aligned}$$

Note that the names given the constants of integration were seriously rigged so that $c_1 = 1$ corresponds to $f_{0,1}$, and we can take $c_2 = 1$ to correspond to $f_{0,2}$. Although it doesn’t matter right now, it will help later to note that

$$f_{0,2} = \ln(\csc \theta + \cot \theta) = \frac{1}{2} \ln \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right).$$

This shows us two things: First, the argument of the square root, and hence the logarithm, is never negative, so we don’t have to worry about absolute value signs. Next, the solution clearly diverges at $\cos \theta = \pm 1$, and so is not part of our physical solution.

The above procedure gets nasty for integer $n > 0$, though. For instance, for $n = 1$, $f_{1,1} = \cos \theta$, use the standard “Reduction of Order” technique; that is, let $f_{1,2} = v(\theta)$ $f_{1,1} = v(\theta) \cos \theta$, insert into equation, turn crank, cross fingers and arrive at

$$\frac{v''(\theta)}{v'(\theta)} = \frac{d}{d\theta} \ln(v'(\theta)) = 2 \tan \theta - \cot \theta \quad \longrightarrow \quad v'(\theta) = \sec^2 \theta \csc \theta$$

if done correctly (hey, it took me a few tries). The primes denote differentiation with respect to θ . Play with this last expression at your leisure; I know of no way to do the needed integral that does not involve integration by parts. The result is $f_{1,2} = 1 - \frac{\cos \theta}{2} \ln \left(\frac{1+\cos \theta}{1-\cos \theta} \right)$, which has similar difficulties at $\cos \theta = \pm 1$.

Before going on, note that $f_{0,1}$ is a (trivially) even function of $\cos \theta$, $f_{0,2}$ is an odd function of $\cos \theta$, $f_{1,2}$ is an odd function of $\cos \theta$ and $f_{1,2}$ is an even function of $\cos \theta$. Indeed, this pattern can be shown to be valid for all integer $n \geq 0$.

To look at these functions further and a bit more rigorously, it helps to make the change of dependent variable $x = \cos \theta$; indeed, this substitution is almost the only way to do the above integral to find v from v' . The differential equation for f_n then becomes

$$n(n+1) f_n + \frac{d}{dx} \left((1-x^2) \frac{d}{dx} f_n \right) = 0.$$

In this form, the usual methods of obtaining series solutions (“Frobenius Solutions”) may be employed. The technique won’t be reproduced in these notes, but it can be seen that near $x = 0$ ($\cos \theta = 0$, $\theta = \pi/2$), two independent Frobenius Series solutions exist, one with lowest power x^0 and one with lowest power x^1 , *regardless of the value of n*. It is further seen, however, that if n is an integer, one series will truncate after the x^n term, and the other will have an infinite series expression which diverges logarithmically at $x \rightarrow \pm 1$.

The reason for presenting this in this appendix is to emphasize that the two solutions are *not* found by considering the problem as an “exceptional case;” the roots of the indicial equation, 0 and 1, while differing by an integer, both lead to solutions valid for $-1 < x < 1$, but we discard the divergent solutions if we want results physically valid for the whole sphere.

Warning: Quantum Mechanics is, of course, different. Sometimes we want and even seek divergent solutions.