8.02 - ESG Independent Study Spring 2005
Unit 5: Conductors

This unit is a short one, intended to provide a link between the so far theoret-
ical discussion of electric fields and capacitors, which are actual everyday electrical
components. Also, we introduce a part of potential theory, which has applications to
many topics (besides electromagnetism), including heat conduction and fluid flow.

The material for this unit is not covered rigorously in UP11 (the applicable
section is Section 21.2). For this unit, you should read in Purcell (second edition;
ask if you want to borrow a copy of the first edition) Chapter 3, sections 1-4 & 8.
The discussion is not numerical, and should be understood by those unfamiliar
with Gaussian units. If you're used to MKSA, you might even want to rederive
Purcell’s equations in these sections using MKSA units (once you do two or three
at the most, you’ll appreciate how simple conversion is.). Do problems 2, 3, 5, 7
and 8 from Chapter 3. Problem 3.3 has a very elegant solution and is immensely
instructive.

The unit “test” for this unit consists of doing the following problem and ex-
plaining your result to a tutor. That is, besides writing a clear and concise solution,
you should be prepared to defend your work to a not-so-skeptical audience. You
might be asked to find and demonstrate another aspect of your result. Note that in
the problem, electrostatic potential is represented as ¢ (psi) to distinguish it from
the angular variable ¢.

The needed vector derivatives for this unit are in the last page of these guide-
lines. Or, you may download a more extensive table from the 8.02IS-ESG web
page.

In addition, those familiar with differential equations at the 18.03 level might
spot a place where we’ve tried to sweep some upleasantness under a rug, but found
no rug. The details are not important to this unit, and so are given in a Mathe-
matical Appendix to Unit 5, linked from the web page but not attached to this

unit description.



Test Problem

A uniform perfectly conducting sphere of radius R is placed in a uniform electric
field E,, of magnitude E, (the subscript “a” is for “ambient”). What is the induced
dipole moment of the sphere?

Suggested procedure:

(1) Set up a spherical polar coordinate system with origin at (where else?) the
center of the sphere. Since the sphere is a conductor, its surface is an equipo-
tential, so let the potential (¢/) at the surface be zero. Let the = 0 direction be
the direction of the uniform field, and express 1y, the potential corresponding

to the uniform field, in terms of E,, r, and 6.

The table at the end of these guidelines is taken from Jackson, Classical Elec-

trodynamics, and it’s a good thing to have. Please be careful; here,

x =1 sinf cos ¢ r=Va?ty?+ 22

z
cosl =

y =17 sinf sin ¢ \/m

z =1 cosf tanqzﬁ:y
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Your math instructor may have told you something specious.

(2) Find the new potential outside the sphere. To do this, assume that the potential

is a sum of terms of the form 7" f,,(0) (no ¢ dependence). Specifically, assume
7711 = Z An " fn(‘g)a

where the A, are constants. Using the attached table, derive a simple differ-
ential equation for f, in terms of n and 6 that must be satisfied so that each
term in the above proposed sum satisfies the needed condition for the potential
outside the sphere. That is, show that

1 d (. d
O—n(n—i—l)fn—l—@@ (sm@—fn).



NOTE: This (item 3) is where those with 18.03 knowledge may spot something
fishy. See the Mathematical Appendix to Unit 5 for a non-apology.

(3) Show that (within possible multiplicative constants), fo = f_1, f1 = f_2,
fo = f—3, etc. Find f,, for n = —3 to 2. Use the fact (for now, take it as given)
that if n > 0 is an integer, f, is an n*" order polynomial in cos 6.

(4) Now, for the case of the conducting sphere we need
(a) asT> R, 9 =1y
(b) at r =R, ¢ =0.

Using these, show that the only 1 satisfying these conditions consists of two

terms and is of the form

Y =Ar"f,(0)+ Br™ f,(0).

Find A, B, n and m.

(5) In Part 4, you should have found that the presence of the sphere adds a term
to the potential corresponding to a dipole field. Since the potential due to a
dipole is (pcosf)/ (4meor?) in MKSA, or (pcos)/r? in CGS, where p is the
dipole moment, find p in terms of E, and R.

(6) Find E and o (the surface charge density) on the surface of the sphere. (Use
the table to find E from v if you need to.) Show that [odA =0, and find by

direct integration
pP= / rodA.

The simplest way to do this is to denote
r =Xrsinflcos¢+ yrsinfsin¢ + zrcosb.
On the sphere, r = R. To do the integral in spherical coordinates, use dA =
R? sin6df d¢.
Check that |p| is the same as found in Part 5 above, and so express

p=akE,.

(7) If there are n such spheres per unit volume, the polarizability is then y = na.

Thus we have a simple model of a dielectric, which we will use in the next unit.



A Partial Table of Vector Operators
Spherical Polar Coordinates

Using
PHYSICS Notation
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