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Problem 1: 25.14 
An insulating rod having linear charge density and linear mass density 0.100 kg/mµ =  is 
released from rest in a uniform electric field E 100 V/m=  directed perpendicular to the 
rod (Fig. P25.14).  

Fig. P25.14 
 

(a) Determine the speed of the rod after it has traveled 2.00 m. 
(b) How does your answer to part (a) change if the electric field is not perpendicular 

to the rod? Explain. 
 
Solution: 
 
(a) When the rod is moving along the electric field, it is moving from a high potential 
point to a low potential point, so the rod is going to lose potential energy. And by 
conservation of energy, the lost in potential energy is the same as the gain in kinetic 
energy. Thus 
 
 lost gainPE KE=  (1.1) 
 
If the rod travels a distance s along the electric field, the potential difference from the 
starting point to the end point would be 
 
 V Es∆ =  (1.2) 
 
Suppose the rod has its length l, then the charge of the rod is given by 
 
 rodQ lλ=  (1.3) 
 

2003 Spring 8.02 with Kai  
Problem Set 3 Solution 

1



Therefore 
 
 ( )lost rodPE Q V lEsλ= ∆ =  (1.4) 
 
If the rod has its mass density µ , then it has a mass 
 
 rodm lµ=  (1.5) 
 
Thus, according to equation (1.1), we have 
 

 ( ) 21
2

lEs l vλ µ=  (1.6) 

 
which gives  
 

 2 Esv λ
µ

=  (1.7) 

 
Substituting the value that we have, we obtain 
 
 0.400 m/sv =  (1.8) 
 
(b) The speed would be the same as part (a), since the electric field is a conservative field, 
that the work done by the field (the potential energy) does not depend on the path that it 
takes.  
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Problem 2: 25.15 
A particle having charge q 2.00 Cµ= +  and mass 0.0100 kgm =  is connected to a string 
that is  long and is tied to the pivot point P in Figure P25.15.  1.50 mL =
 

Fig. P25.15 
 

The particle, string, and pivot point all lie on a horizontal table. The particle is released 
from rest when the string makes an angle 60.0θ = °  with a uniform electric field of 
magnitude . Determine the speed of the particle when the string is parallel 
to the electric field (point a in Fig. 25.15). 

300 V/mE =

 
Solution: 
 
The potential difference between the initial point and the end point would just be the 
product of the electric field and the “perpendicular distance” between the two points, 
therefore,  
 ( )cosV E L L θ∆ = − −  (2.1) 
 
Thus, having the charge q, the charge would lose a potential energy of magnitude 
 
 ( )1 coslossPE q V qEL θ= ∆ = −  (2.2) 
 
And by conservation of energy, this would be the gain in kinetic energy, thus 
 

 (21 1 cos
2

mv qEL )θ= −  (2.3) 

 
which would gives 
 

 ( )2 1 cosqEL
v

m
θ−

=  (2.4) 

 
and the answer should be  
   
 0.300 m/s  (2.5) 
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Problem 3: 25.30 
Two point charges of equal magnitude are located along the y axis equal distances above 
and below the x axis, as shown in Figure P25.30.  
 

Fig. P25.30 
 

(a) Plot a graph of the potential at points along the x axis over the interval 

. You should plot the potential in units of 3a x a− < < 3 ek Q
a

. 

(b) Let the charge located at a−  be negative and plot the potential along the y axis 
over the interval . 4a y a− < 4<

 
Solution: 
 
For any point in x axis, its potential would be  

 ( ) ( ) ( )
( )

1 2
2 2 2 21

e ee e k Q k Qk Q k Qx
r r x a 2x a

ϕ = + = +
+ + −

 (3.1) 

 
which gives  

 ( )
2

2
e

x
k Q x aa a

ϕ
=

     +    

 (3.2) 

 
and should be in the form 
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(b) For the points in the y axis and if one of the charge is changed to negative charge, we 
have 

 ( ) e ek Q k Qy
y a y a

ϕ = −
− +

 (3.3) 

 
which gives 
 

 ( ) 1 1

1 1e

y
k Q y y
a a a

ϕ
= −

− +
 (3.4) 

 
which would gives 
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Problem 4: 25.31 

In Rutherford’s famous scattering experiments that led to the planetary model of the atom, 
alpha particles (charge , mass = 6.64 ) were fired at a gold nucleus (charge 
+79e). An alpha particle, initially very far from the gold nucleus, is fired with a velocity 
of  directly toward the center of the nucleus. How close does the alpha 
particle get to this center before turning around? Assume the gold nucleus remains 
stationary. 

2e+ 27−

7

10  kg×

2.00 10  m/s×

 
Solution: 
 
We apply the law of energy conservation again. The alpha particles have kinetic energy 
at the beginning. So if the direction is head on, that means that the alpha particle would 
stop at the point where it loses all its kinetic energy in order to gain the potential energy 
required for it to reach that point. We know that for a point charge, the potential at a point 
r away from the gold nucleus is  
 

 e gold
r

k Q
V

r
=  (4.1) 

 
Thus, for the alpha particle to reach a point R away from the gold nucleus,  
 

 e gold
alpha

k Q
PE q

R
=  (4.2) 

 
Therefore, this would equal to the initial kinetic energy, which is 
 

 21
2

gold alpha
e

Q q
mv k

R
=  (4.3) 

 
Rearranging, we have 

 2

2 e gold alphak Q q
R

mv
=  (4.4) 

 
 
which gives 
 14

min 2.74 10 mR −= ×  (4.5) 
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Problem 5: 25.40 
When an uncharged conducting sphere of radius a is placed at the origin of an xyz 
coordinate system that lies in an initially uniform electric field 0E=E , the resulting 
electric potential is  

k

 ( )
( )

3
0

0 0 3
2 2 2 2

, , E a zV x y z V E z
x y z

= − +
+ +

 (5.1) 

for points outside the sphere, where V  is the (constant) electric potential on the 
conductor. Use this equation to determine the x, y, and z components of the resulting 
electric field.  

0

 
Solution: 
 
We know that, since this a conducting sphere, there is no charge inside the sphere, and 
thus the electric field inside the sphere is zero, according to Gauss’s Law. 
 
For , ,x y z a> , we can obtain the electric field in the three coordinate by taking the 
partial derivative of the potential respect to the according coordinate, that is  
 

 , ,x y z
V VE E E V
x y z

∂ ∂
= − = − = −

∂
∂ ∂ ∂

 (5.2) 

 
which gives  

 
( ) ( )

( )
( )

3 2 2 23 3
00 0

05 5
2 2 2 2 2 2 2 2 22 2

23 3
x y z

E a z x yE a xz E a yzE E E E
x y z x y z x y z

5
2

 
− − = + + = + + + 

 + + + + + + 

E i j k i j k (5.3) 
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Problem 6: 25.45 
Calculate the electric potential at point P on the axis of the annulus shown in Figure 
P25.45, which has a uniform charge density σ . 
 

Fig. P25.45 
 
Solution: 
 
This arrangement of charges would be equal to as if we have a uniformly charged disc 
with a radius b with charge density σ , superimposed with another uniformly charged 
disc with radius a with charge density σ− . So, by what we have done in class, the 
potential due to a charged disc with radius r at x away is given by  
 
 22disc eV k xπσ 2r= +  (6.1) 
 
Therefore, the potential due to above arrangement is given by  
 

 ( )2 2 2 22disk a disk b eV V V k x b x aπσ= + = + − +  (6.2) 
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Problem 7: 25.46 
A wire of finite length that has a uniform linear charge density λ  is bent into the shape 
shown in Figure P25.46. Find the electric potential at point O.  
 

Fig. P25.46 
 
Solution: 
 
So we use the formula  

 dqd
r

ϕ =  (7.1) 

 
to calculate the potential at that point, that is we want to know what is the contribution to 
the potential at point O by each small bit of charge dq along the line of charge. As shown 
above, the line of charge can be divided into three parts, and each part would have 
different representation of the formula (7.1). Consider the straight part, which is the part 
on the left and on the right, we have  
 

 dq dxd
r x

λϕ = =  (7.2) 

 
while for the middle curved part, we have 
 

 dq dl R dd
r R R

dλ λ θϕ λ θ= = = =  (7.3) 

 
Therefore, we have 

 
0 3

3

R

R

dx dxd
R

Rx xπ

λ λϕ λ θ
−

− −
= + +∫ ∫ ∫  (7.4) 

 
which gives 
 
 ( )2ln 3ekϕ λ π= +  (7.5) 
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Problem 8: 25.50 
Two concentric spherical conducting shells of radii a 0.400 m=  and are 
connected by a thin wire, as shown in Figure P25.50. If a total charge Q

0.500 mb =
10.0 Cµ=  is 

placed on the system, how much charge settles on each sphere? 
 

Fig. 25.50 
 
Solution: 
 
Since this is a conductor, and we know that charge only resides on the surface. Since the 
two shells are connected by a wire, the charge would go as outside as possible, so the 
charge would just go to the outer sphere. As a result, there would be no charge on the 
inner sphere, and 10.0 Cµ  on the outer sphere. 
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Problem 9: 25.68 
The thin, uniformly charged rod shown in Figure P25.68 has a linear charge density λ . 
Find an expression for the electric potential at P.  
 
Solution: 
 
Consider a bit of charge dq which situates at x away from the origin, then it would have a 
distance 2 2x b+ to the point P. We know that  
 

 
2

dq dxd
r 2x b

λϕ = =
+

 (9.1) 

 
and the limit of integration should be from a to a l+ , thus 
 

 
2 2

a l

a

dx
x b
λϕ

+
=

+
∫  (9.2) 

 
which gives 

 
( )2 2

2 2
lne

a l a l b
k

a a b
ϕ λ

 + + + +=
 + + 




 (9.3) 
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