Quantum Physics II1 (8.06) Spring 2005
Solution Set 2

February 15, 2005

1. Fermi energy, velocity and temperature of copper
Griffiths 2"¢ ed. problem 5.16 (1°¢ ed. problem 5.13).

(a) (1 points) In order to find the Fermi energy, we need to first have the number density of
electrons. Copper has one valence electron (i.e., we are taking ¢ = 1) so the number density of

electrons will be the same as the number density of atoms in copper. This in turn is given by

~ 8.96gm/cm® 6.02 x 10?% atoms

= = 8.49 x 10*® at 2.
63.5 gm/mole mole % atoms/m

It is now easy to calculate

R2(3720)2/3
Ep = BT 13 % 1018 joules = T.05 eV
2m
(b) (1 points) With Ep = $muv%, we find vp = 1.57 x 105m/s. Although this is very fast, it
is only about half a percent of the speed of light, and so it is still okay to treat the electrons

as non relativistic.

¢) (1 point) The Fermi temperature is given by Tr = Er/kg = 81800 K. This is much larger
(c) (1 point) p g y g
than the melting point of copper, let alone room temperature!

(d) (1 point) The degeneracy pressure is given by P = h?(372)%/3p5/3 /(5m) = 3.83x10'0 N/m2.

This is phenomenally large; fermions really do not like being in the same place.

2. The Kronig-Penney Model
(a) (9 points) Griffiths 2 ed. problem 5.20. When we make the periodic delta function potential

attractive instead of repulsive, we find that the allowed energies (when E > 0) are determined
through the equation
cos(Ka) = cos(ka) — % sin(ka), (1)

where k = v2mE /h. We only need to change the sign of «, the strength of Delta function, in
Griffiths 274 ed. eqn. (5.64). Using non-dimensional variables z = ka and 3 = maa/h?, we

rewrite right hand side of above equation as

sin(z) .

f(z) = cos(z) = B (2)

z
We plot it for = 1 in figure 1 and § = 3 in figure 2. For the bands for which f(z) varies from
—1to 41, i.e. cos(Ka) varies from —1 to +1, hence K varies from 0 to 27 /a and therefore band
contains N states. In 3 = 1 case (fig.1) first allowed band has N/2 states because f(z) varies
from 0 to —1, hence K varies from 7/2a to 37/2a. For = 3, in all bands f(z) varies from —1

to +1 thus the bands contain N states each. Band gaps slowly decrease for subsequent bands.
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Figure 1: f(z) for 8 = 1.
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Figure 2: f(z) for 8 = 3.




For 0 < 8 < 1 we will have more states in the first band and for 1 < 8 < 2, less states. For
B > 2 (for example 8 = 3) we will have N states in all bands but first band won’t start with
k = 0. See figure 2.

Since we have an attractive Dirac comb we can also have negative energy states or bound
states i.e. £ < 0. Define k = \/m/h Since potential is 0 in the region 0 < z < a we can
write,

P(z) = Ae"™ + Be ™. (0<z <a)

From Bloch theorem we have,
P(x) =e T +a). (—a<x<0)
= h(z) = e KU A THD) 4 BemrlHa)) (g <z < 0)
Continuity condition for 1 at x = 0 gives
A(1 — emiKagra) — p(e=iKag=ra _ 1),

While ¢’ suffers a discontinuity proportional to the strength of the delta function (Griffiths
27 ed. eqn. (2.125)):

. 2 , 2
A <1 — g iagra 4 Tga> =B (1 — g iKagmra _ T;La) .
h*k h°k

Eliminating A and B from the above two equations and simplifying we obtain the required
result,

cos(Ka) = cosh(ka) — nga sinh(ka).
K

[NOTE: We can obtain the same result by substituting £ = —ix in eqn. (1).] For z = ka we
rewrite right hand side of the above equation as,

sinh(z)
-

h(z) = cosh(z) — 8 (3)
We plot this for 8 =1 and 8 = 3 in figure 3. For negative energies we have only one allowed
band, which can be full or partial depending on the value of 8. For § > 2 we will have N states
in the band and for 8 < 2 we will have less than NV states. At § = 1, there are exactly N/2
states in this band. Band moves farther away from E = 0 and becomes narrower as 3 increases
beyond 2 (for example 8 = 3). Now combining the results, for the case 3 < 2, for positive and
negative £ we find that, the only band for £ < 0 and lowest band for E > 0 combine together
and actually has exactly N states. Hence the lowest band in the full spectrum is partially
above and below E = 0 (see figure 4). For § > 2 (for example 8 = 3) it is completely below
E = 0. A rough picture of the energy spectrum for g = 1 is shown in figure 4 and that for
[ = 3 in figure 5. For full credit students should make graphs for one value of 8 and draw

correct conclusions for that value.

(b) (3 points) Through the equation

cos(Ka) = cos(ka) + ﬁsink(fa) (4)




Figure 3: h(z) for =1 and 8 = 3.
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Figure 4: Schematic sketch of the energy spectrum for 5 = 1.
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Figure 5: Schematic sketch of the energy spectrum for g = 3.

every value of cos(Ka) determines a k and therefore an energy E = h2k? /2m. Now K = 2]:;—3,
where n = 0,1,...,N — 1. Also, cos = cos(2m — 6), and therefore cos(%T”) = COS(MN_H)).
We can therefore identify two cases: first, if n = 0 or n = N/2, then the above equality is
trivial, and the energies resulting from equation (4) are non degenerate. Second, for all other
values of n, n and N — n give the same value of cos(Ka) (and n # N —n), and therefore the

energies resulting from equation (4) are doubly degenerate.

. Analysis of a general one-dimensional periodic potential
(a) (2 points) When we differentiate the Wronskian, we find

dW
e Yoy — b1y

According to the Schrodinger equation, ¢ = —QH—T(E — v)1h1, and similarly for ¢5. Therefore
aw 2m
v Mg - —0.
i 2 (B —v)(Yath1 — h1¢2)
(b) (2 points) First, we evaluate the Wronskian for z < —a/2:
W(r < —a/2) = —2ikrt*.
For z > a/2, on the other hand, we have

W(x > a/2) = 2ikr*t.
This tells us that (rt*) = —(rt*)*, and therefore that rt* is pure imaginary.
(c) (8 points) The Bloch conditions on ¢ and ¢’ yield the equations
A(eiKa + 7,,ei(chrK)a _ teika) _ B(l + 7neika _ tei(K+lc)a)

A(eiKa _ Tei(kJrK)a _ teika) _ B(—l + Teika + tei(KJrk)a)'



Dividing the first equation by the second yields

eiKa + ,rei(k-&-K)a _ teika 1+ ,reik:a _ tei(K-i—k)a

eiKa _ pei(k+K)a _ ¢eika - —1 + retka 4 tet(K+k)a*®

Multiplying through by the denominators yields
(eiKapreilb+Kla_geikay (1| peikaypoilK+h)ay — (14 peika_tei(K+h)ay(giKa_poith+K)a_yeikay
which after expansion and canceling terms gives

e (1 4 (12 — §2)e2ika) 4 (2iKa(geikay | peika —

Adjusting the phases and rearranging gives the desired answer,

i(e_ika + (t2 _ 7,,2)61'1«1). (5)

cos(Ka) = of

(d) (2 points) Using the parameterizations for r and ¢ given in the problem set, we find

tQZTz = ei‘s‘%l. Since 1 = ﬁe’m, equation (5) becomes
cos(ka + 0)
cos(Ka) = T (6)

(e) (6 points) We want to consider situations such that |t| < 1. To be able to solve (6), we
must have cos(ka + §) < [¢|. Since that means the cosine must be very small, its argument
must be near (n + 1/2)w, and therefore we can expand cos(ka + 0) ~ |ka + 3§ — (n + 1/2)7|.
This means that the largest allowed value of k is given by

1 2 1
kmaI:<(n+)ﬂ-_(S+t|>v
a 2

while the smallest allowed value of k is given by

a 2

The allowed range of energies is given by h%(k2,,, — k2,.,.)/2m, which is

2 2 2
ap = M l((2n+1)ﬂ5+|t|) - ((2n+1)7r5|t> ]
2ma 2 2
21 [ (2n+ D)7
ma? ( 2 _5> 1

which is proportional to |¢|.

(f) (6 points) We now want to consider situations where || < 1. In this case, the right hand
side of equation (6) is larger than one only when cos(ka + ) > [t| = (1 — |r[?/2). (We have
used the binomial expansion to simplify the relationship between |r| and [t].) Since § is very

small, we can drop it; expanding the cosine then gives us

|ka — nz| < |r|.



In this case the largest value of k satisfying the above (or the smallest value of allowed k above
nm) is given by kpeza = nw + |r|, while the smallest value of k (or the largest value of allowed
k below nr) is given by ke = nm — |r|. From this we find that the forbidden range of

energies is (to leading order in |r|)

AE = ( n (7% + 2|r|nm) — LQ(n27r2 - 2|r|n7r)>
2ma? 2ma?
B 2h2n|r|
B ma?

(g) (6 points) We now wish to make the above discussion a bit more concrete, and we take our
periodic potential to be an array of repulsive delta functions. To see what our above formulas
tell us about this case, we first need to solve for r and ¢. To do this, it is sufficient to consider
Y and 9} at x = 0. Continuity of ¢y, at z = 0 tells us

1+r=t. (7)

Meanwhile the continuity condition on 1} at 0 is modified by the delta function (use eqn.
(2.125) of Griffiths 2" ed.) to give us

2ma

(8)
Recalling that ¢ = [t|e?® and r = +i|r|e’?, the imaginary part of (7) tells us that
+|r|cosd = |¢|sin,

while the real part gives us
F|r|sind = |t|cos§ — 1.

Combining the two above equations tells us
[t| = cosé.

Meanwhile, substituting » = ¢ — 1 into (8) tells us that

l_ima

‘= n2k
mo 2°
1+ (F55)
Now cot d = ﬁfli, so from the above
h’k
cotd = ———.
mao

When we plug these expressions for cot d and [t| into equation (8) of the problem set, we find

cos(ka) cos § — sin(ka) sin &

cos(Ka) = p—

= cos(ka) + % sin(ka),

which is precisely the equation derived in Griffiths.



4. An operator ordering ambiguity

(2 points) First, we calculate [#2,p%] = 2ih(&p + p), and the classical Poisson bracket
{22, p*}pp = 4xp. Using the general rule to obtain the quantum commutator from the clas-
sical Poisson bracket, [A, B] = ih{A, B} pp, would give us [#2,p?] = 4ihép. Further requiring
that i times the commutator be a Hermitian operator gives us [22, p?] = 2ih(&p + p2), which

is correct.

(4 points) We now calculate [22,p%] = 3ih(p2? + p22p + £2p?), and the classical Poisson
bracket {z%,p3}pp = 92?p?. As in the previous case, the general rule [A,B] = h{A,B}pp
gives us the correct quantum mechanical commutator up to operator ordering. Unlike the
previous case, however, the requirement that the right hand side of the commutator be i times
a Hermitian operator is not sufficient to give us the correct answer. This is because there
are many different possible Hermitian combinations of two Z’s and two p’s; two such possible
combinations appear in the answer above, p?42 4+ 22p% and pi2p, but others, such as p?% do
not.

5. Landau Levels: a prelude
(a) (3 points) When B = 10 tesla, then the energy spacing hwy, is given by
heeB (197 x 1077 eVem)(300 x 105 eV /cm)

mc? 511keV
= 12x1073eV.

th =

In natural units the length ¢ is

h 1 he
= = - =41x1072=.
fo V mwr, he V' mc2hwry, x 10 eV

Notice that this length is the inverse of the geometric average of the two energy scales of

the problem: the rest energy of the electron, and the cyclotron energy hwy. Finally, in cm,
fy = 8.0 x 10~ "cm.

(b) (3 points) The magnetic flux through the area Ap = 2743 is

h /mc hc

As we will see, this is precisely one so-called flux quantum.



