
Quantum Physics III (8.06) Spring 2005
Solution Set 2

February 15, 2005

1. Fermi energy, velocity and temperature of copper

Griffiths 2nd ed. problem 5.16 (1st ed. problem 5.13).

(a) (1 points) In order to find the Fermi energy, we need to first have the number density of
electrons. Copper has one valence electron (i.e., we are taking q = 1) so the number density of
electrons will be the same as the number density of atoms in copper. This in turn is given by

ρ =
8.96 gm/cm3

63.5 gm/mole
6.02× 1023 atoms

mole
= 8.49× 1028 atoms/m3.

It is now easy to calculate

EF =
h̄2(3π2ρ)2/3

2m
= 1.13× 10−18 joules = 7.05 eV.

(b) (1 points) With EF = 1
2mv

2
F , we find vF = 1.57 × 106m/s. Although this is very fast, it

is only about half a percent of the speed of light, and so it is still okay to treat the electrons
as non relativistic.

(c) (1 point) The Fermi temperature is given by TF = EF /kB = 81800K. This is much larger
than the melting point of copper, let alone room temperature!

(d) (1 point) The degeneracy pressure is given by P = h̄2(3π2)2/3ρ5/3/(5m) = 3.83×1010N/m2.
This is phenomenally large; fermions really do not like being in the same place.

2. The Kronig-Penney Model

(a) (9 points) Griffiths 2 ed. problem 5.20. When we make the periodic delta function potential
attractive instead of repulsive, we find that the allowed energies (when E > 0) are determined
through the equation

cos(Ka) = cos(ka)− mα

h̄2k
sin(ka), (1)

where k =
√

2mE/h̄. We only need to change the sign of α, the strength of Delta function, in
Griffiths 2nd ed. eqn. (5.64). Using non-dimensional variables z ≡ ka and β ≡ mαa/h̄2, we
rewrite right hand side of above equation as

f(z) ≡ cos(z)− β
sin(z)
z

. (2)

We plot it for β = 1 in figure 1 and β = 3 in figure 2. For the bands for which f(z) varies from
−1 to +1, i.e. cos(Ka) varies from −1 to +1, hence K varies from 0 to 2π/a and therefore band
contains N states. In β = 1 case (fig.1) first allowed band has N/2 states because f(z) varies
from 0 to −1, hence K varies from π/2a to 3π/2a. For β = 3, in all bands f(z) varies from −1
to +1 thus the bands contain N states each. Band gaps slowly decrease for subsequent bands.
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Figure 1: f(z) for β = 1.
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Figure 2: f(z) for β = 3.
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For 0 < β < 1 we will have more states in the first band and for 1 < β ≤ 2, less states. For
β > 2 (for example β = 3) we will have N states in all bands but first band won’t start with
k = 0. See figure 2.

Since we have an attractive Dirac comb we can also have negative energy states or bound
states i.e. E < 0. Define κ =

√
2m|E|/h̄. Since potential is 0 in the region 0 < x < a we can

write,
ψ(x) = Aeκx +Be−κx. (0 < x < a)

From Bloch theorem we have,

ψ(x) = e−iKaψ(x+ a). (−a < x < 0)

⇒ ψ(x) = e−iKa(Aeκ(x+a) +Be−κ(x+a)). (−a < x < 0)

Continuity condition for ψ at x = 0 gives

A(1− e−iKaeκa) = B(e−iKae−κa − 1).

While ψ′ suffers a discontinuity proportional to the strength of the delta function (Griffiths
2nd ed. eqn. (2.125)):

A

(
1− e−iKaeκa +

2mα
h̄2κ

)
= B

(
1− e−iKae−κa − 2mα

h̄2κ

)
.

Eliminating A and B from the above two equations and simplifying we obtain the required
result,

cos(Ka) = cosh(κa)− mα

h̄2κ
sinh(κa).

[NOTE: We can obtain the same result by substituting k = −iκ in eqn. (1).] For z = κa we
rewrite right hand side of the above equation as,

h(z) ≡ cosh(z)− β
sinh(z)
z

. (3)

We plot this for β = 1 and β = 3 in figure 3. For negative energies we have only one allowed
band, which can be full or partial depending on the value of β. For β ≥ 2 we will have N states
in the band and for β < 2 we will have less than N states. At β = 1, there are exactly N/2
states in this band. Band moves farther away from E = 0 and becomes narrower as β increases
beyond 2 (for example β = 3). Now combining the results, for the case β < 2, for positive and
negative E we find that, the only band for E < 0 and lowest band for E > 0 combine together
and actually has exactly N states. Hence the lowest band in the full spectrum is partially
above and below E = 0 (see figure 4). For β > 2 (for example β = 3) it is completely below
E = 0. A rough picture of the energy spectrum for β = 1 is shown in figure 4 and that for
β = 3 in figure 5. For full credit students should make graphs for one value of β and draw
correct conclusions for that value.

(b) (3 points) Through the equation

cos(Ka) = cos(ka) + β
sin(ka)
ka

(4)
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Figure 3: h(z) for β = 1 and β = 3.
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Figure 4: Schematic sketch of the energy spectrum for β = 1.
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Figure 5: Schematic sketch of the energy spectrum for β = 3.

every value of cos(Ka) determines a k and therefore an energy E = h̄2k2/2m. Now K = 2πn
Na ,

where n = 0, 1, . . . , N − 1. Also, cos θ = cos(2π − θ), and therefore cos( 2πn
N ) = cos( 2π(N−n)

N ).
We can therefore identify two cases: first, if n = 0 or n = N/2, then the above equality is
trivial, and the energies resulting from equation (4) are non degenerate. Second, for all other
values of n, n and N − n give the same value of cos(Ka) (and n 6= N − n), and therefore the
energies resulting from equation (4) are doubly degenerate.

3. Analysis of a general one-dimensional periodic potential

(a) (2 points) When we differentiate the Wronskian, we find

dW

dx
= ψ2ψ

′′
1 − ψ1ψ

′′
2 .

According to the Schrodinger equation, ψ′′
1 = − 2m

h̄2 (E − v)ψ1, and similarly for ψ2. Therefore

dW

dx
= −2m

h̄2 (E − v)(ψ2ψ1 − ψ1ψ2) = 0.

(b) (2 points) First, we evaluate the Wronskian for x ≤ −a/2:

W (x ≤ −a/2) = −2ikrt∗.

For x ≥ a/2, on the other hand, we have

W (x ≥ a/2) = 2ikr∗t.

This tells us that (rt∗) = −(rt∗)∗, and therefore that rt∗ is pure imaginary.

(c) (8 points) The Bloch conditions on ψ and ψ′ yield the equations

A(eiKa + rei(k+K)a − teika) = B(1 + reika − tei(K+k)a)

A(eiKa − rei(k+K)a − teika) = B(−1 + reika + tei(K+k)a).
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Dividing the first equation by the second yields

eiKa + rei(k+K)a − teika

eiKa − rei(k+K)a − teika
=

1 + reika − tei(K+k)a

−1 + reika + tei(K+k)a
.

Multiplying through by the denominators yields

(eiKa+rei(k+K)a−teika)(−1+reika+tei(K+k)a) = (1+reika−tei(K+k)a)(eiKa−rei(k+K)a−teika),

which after expansion and canceling terms gives

eiKa(−1 + (r2 − t2)e2ika) + e2iKa(teika) + teika = 0.

Adjusting the phases and rearranging gives the desired answer,

cos(Ka) =
1
2t

(e−ika + (t2 − r2)eika). (5)

(d) (2 points) Using the parameterizations for r and t given in the problem set, we find
t2−r2

t = eiδ 1
|t| . Since 1

t = 1
|t|e

−iδ, equation (5) becomes

cos(Ka) =
cos(ka+ δ)

|t|
. (6)

(e) (6 points) We want to consider situations such that |t| � 1. To be able to solve (6), we
must have cos(ka + δ) ≤ |t|. Since that means the cosine must be very small, its argument
must be near (n + 1/2)π, and therefore we can expand cos(ka + δ) ' |ka + δ − (n + 1/2)π|.
This means that the largest allowed value of k is given by

kmax =
1
a

(
(2n+ 1)π

2
− δ + |t|

)
,

while the smallest allowed value of k is given by

kmin =
1
a

(
(2n+ 1)π

2
− δ − |t|

)
.

The allowed range of energies is given by h̄2(k2
max − k2

min)/2m, which is

∆E =
h̄2

2ma2

[(
(2n+ 1)π

2
− δ + |t|

)2

−
(

(2n+ 1)π
2

− δ − |t|
)2

]

=
2h̄2

ma2

(
(2n+ 1)π

2
− δ

)
|t|,

which is proportional to |t|.

(f) (6 points) We now want to consider situations where |r| � 1. In this case, the right hand
side of equation (6) is larger than one only when cos(ka + δ) ≥ |t| = (1 − |r|2/2). (We have
used the binomial expansion to simplify the relationship between |r| and |t|.) Since δ is very
small, we can drop it; expanding the cosine then gives us

|ka− nπ| ≤ |r|.
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In this case the largest value of k satisfying the above (or the smallest value of allowed k above
nπ) is given by kmaxa = nπ+ |r|, while the smallest value of k (or the largest value of allowed
k below nπ) is given by kmina = nπ − |r|. From this we find that the forbidden range of
energies is (to leading order in |r|)

∆E =
(

h̄2

2ma2
(n2π2 + 2|r|nπ)− h̄2

2ma2
(n2π2 − 2|r|nπ)

)
=

2h̄2nπ|r|
ma2

.

(g) (6 points) We now wish to make the above discussion a bit more concrete, and we take our
periodic potential to be an array of repulsive delta functions. To see what our above formulas
tell us about this case, we first need to solve for r and t. To do this, it is sufficient to consider
ψL and ψ′

L at x = 0. Continuity of ψL at x = 0 tells us

1 + r = t. (7)

Meanwhile the continuity condition on ψ′
L at 0 is modified by the delta function (use eqn.

(2.125) of Griffiths 2nd ed.) to give us

t− (1− r) =
2mα
ikh̄2 t. (8)

Recalling that t = |t|eiδ and r = ±i|r|eiδ, the imaginary part of (7) tells us that

±|r| cos δ = |t| sin δ,

while the real part gives us
∓|r| sin δ = |t| cos δ − 1.

Combining the two above equations tells us

|t| = cos δ.

Meanwhile, substituting r = t− 1 into (8) tells us that

t =
1− imα

h̄2k

1 +
(

mα
h̄2k

)2 .

Now cot δ = Re t
Im t , so from the above

cot δ = − h̄
2k

mα
.

When we plug these expressions for cot δ and |t| into equation (8) of the problem set, we find

cos(Ka) =
cos(ka) cos δ − sin(ka) sin δ

cos δ
= cos(ka) +

mα

h̄2k
sin(ka),

which is precisely the equation derived in Griffiths.
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4. An operator ordering ambiguity

(2 points) First, we calculate [x̂2, p̂2] = 2ih̄(x̂p̂ + p̂x̂), and the classical Poisson bracket
{x2, p2}PB = 4xp. Using the general rule to obtain the quantum commutator from the clas-
sical Poisson bracket, [Â, B̂] = ih̄{A,B}PB , would give us [x̂2, p̂2] = 4ih̄x̂p̂. Further requiring
that i times the commutator be a Hermitian operator gives us [x̂2, p̂2] = 2ih̄(x̂p̂+ p̂x̂), which
is correct.

(4 points) We now calculate [x̂3, p̂3] = 3ih̄(p̂2x̂2 + p̂x̂2p̂ + x̂2p̂2), and the classical Poisson
bracket {x3, p3}PB = 9x2p2. As in the previous case, the general rule [Â, B̂] = ih̄{A,B}PB

gives us the correct quantum mechanical commutator up to operator ordering. Unlike the
previous case, however, the requirement that the right hand side of the commutator be i times
a Hermitian operator is not sufficient to give us the correct answer. This is because there
are many different possible Hermitian combinations of two x̂’s and two p̂’s; two such possible
combinations appear in the answer above, p̂2x̂2 + x̂2p̂2 and p̂x̂2p̂, but others, such as x̂p̂2x̂ do
not.

5. Landau Levels: a prelude

(a) (3 points) When B = 10 tesla, then the energy spacing h̄ωL is given by

h̄ωL =
h̄ceB

mc2
=

(197× 10−7 eVcm)(300× 105 eV/cm)
511 keV

= 1.2× 10−3 eV.

In natural units the length `0 is

`0 =
√

h̄

mωL
= h̄c

√
1

mc2h̄ωL
= 4.1× 10−2 h̄c

eV
.

Notice that this length is the inverse of the geometric average of the two energy scales of
the problem: the rest energy of the electron, and the cyclotron energy h̄ωL. Finally, in cm,
`0 = 8.0× 10−7cm.

(b) (3 points) The magnetic flux through the area AB = 2π`20 is

ΦB = 2π`20B = B
h

m

(mc
eB

)
=
hc

e
.

As we will see, this is precisely one so-called flux quantum.
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