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1. Using the Semiclassical Approximation on the Ground State (8 points)

(a) (3 points) We are given a trial wave function ¢ (z) = Asech(ax). Since

0%y 5
= Aa® [sech(az) — 2sech®(az)]
Erel
the Schrodinger equation becomes
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Therefore v is an eigenfunction of H with eigenvalue —h%a? /2m. Since ¢ has no nodes, it

must be the ground state.

(b) (5 points) Let b be the location of the classical turning point. We estimate the lowest
energy eigenvalue by applying the quantization condition

b
[ o IV = V(@) = (- Lyen, (1)

where n = 1,2,.... We need to evaluate the integral ffb dx \/sechz(ax) — sech?(ab). This
integral can be done by setting z = sech?(ax) (therefore, dz = —2azv/1 — z dx):

b
dz [z — z
d h?(ax) — sech?(ab :/ =4/
/_b x\/sec (ax) — sech”(ab) T,

21+ V),

where 0 < zp = sech2(ab) < 1 and the z integral is done by using Mathematica. Since the

classical turning point is
—FE,m
ha
our quantization condition (1) above gives us v2hr(1 + /=E,m/(ha)) = (n — $)7h, or

sech(ab) =
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To estimate the energy of the ground state, set n = 1:

h2a?
B =— 914.. )2
1 m X(9 )7

or, in other words, 83% of the correct answer.



2. Quantum Mechanics of a Bouncing Ball (8 points)

(a) (4 points) For this potential, the appropriate quantization condition is fowt dz \/2m(E, — mgx) =
(n— i)wh, as one side of the potential is a vertical wall. The classical turning point here is

x¢ = F,/(mg). Doing the integral,

x

‘ 2 2
dzv2m(E,, — mgx)'/? = 1/ — g3,

0 m 3g

E, = (3 (n — i) wh@g) 2/3.

‘We therefore find

4

(b) (2 points) Quantum mechanical ground state of neutron (n = 1 and m = 1.67 x 102" K g)

will have energy
2/3
By = <(3/4)27rh\/2mg) —1.37x 10712 eV
This is tiny, as expected—gravity is a very weak force.

(¢) (2 points) Classically, the energy of the dropped ball is E. = mgxg. With 29 = 1 m,
m =1 g, thisis E, = 9.8 x 1073J. We would like to find n such that E,, = 9.8 x 102 J. This

works out to the huge value, n = 2 x 101!

3. Application of the Semiclassical Method to the Double Well Potential (22 points)

(a) and (b) (11 points) The wave function must satisfy two conditions, namely that (1) it
must go to 0 at oo, and (2) since the potential is even, the wave function must be either even,
P(z) = Y(—=x), or odd, ¥(xz) = —1p(—x). These two conditions tell us that the WKB wave

function in the three regions must have the following forms:

_1[®
A e nfmz)dﬂcklﬂ7

Y1 =
VIl
B ifwld:vp C 7ifwldxp
= 76h x _’_76 hJg 5
(> 7 7

D

1 T

Y3 = cosh(/ dwp|) 1) even
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At the classical turning point x2, we apply the connection formula in the standard way to find

Po(x) = %cos {/xzpda;— ﬂ )

Defining

and



we can rewrite o as

wg(x):?//%COS (I—F%—H). (2)

We now turn our attention to the classical turning point x;. First, we define

x1
% :/ pdx.
0

In terms of ¢, the wave function in region 3 is

2/pl
where the plus sign holds when the wave function is even, and the minus sign when the wave

function is odd. We now use both connection formulae to conclude

Yo(x) = D [26¢/2 cos (I - E) + e %2 cos (I + E)} . (3)
2¢/lp| 4 4
We are allowed to use both connection formula in this case—that is, we are allowed to use
one connection formula “against the arrow”— because the symmetry of the potential tells
us exactly which linear combination of growing and dying exponentials we have in region 3.
Ordinarily, we are not allowed to use the second connection formula against the arrow because if
the wave function contains any component which grows exponentially, then our approximation
is not sensitive enough to tell whether there is also a component of the wave function which
the case exponentially, and if so what the relative weight of each part of the wave function is.
In this case, however, we know that we must have either a sinh or a cosh, as the potential is

even.

By setting equation (2) equal to equation (3), we find
D [26¢/2 sin (I + %) + e %2 cos (I + %)} =4A [cos ([ + %) cos 6 + sin (I + Z) sin 0} ,
which tells us that D = e~?/22Asin 6, and, more importantly, that
tan§ = +2e%.

(c) (2 points) Writing 6 = (n + $)7 + ¢, we find

(=1)™cose 1

tanf = ~————— ~ ——.
an (—1)ntlsine €

Therefore the quantization condition becomes
1
—— =42
€
and therefore

1 1
= — Zem®
0 (n+2)71':|:2e . (4)

(d) (3 points) The potential is sketched in figure 1. For this potential we have
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Figure 1: Double well potential

o= /x da mur/ (@1 — @) — (z — a)2.

Using the result

1 1
/dZ\/a2 —22= gzx/az - 22— EQQarctan (—Z ) ,

a2 — 22

we find
_ 2mw TFE

E
0= . (mwQarctan(oo)) =

Here we have taken arctan(oco) = 7/2, as the multivalued-ness of the inverse tangent is taken

care of below. Equation (4) is now

or

The first part of this expression is, of course, the familiar harmonic oscillator energy levels;

the second part is an offset due to the barrier.

(e) (3 points) The wave function for a particle that starts out in the right well is

1 _iET — —iE”
w(:c,t)zﬁ(wﬁe BN e Bt/

The probability density coming from this wave function is

—¢
[ (x, t)? = % (w;:F [ ¥+ 200y cos (wew t)) '

When cos (%7%) = —1, then the particle has hopped to the other well, since at that time
to1 (e, ton)? = 310t (2,0) — ¢y (2, 0) .



The period of oscillation between the two wells is therefore 7 = %e‘j’. Note that a large

barrier corresponds to a very long period, which makes physical sense.
(f) (3 points) We have for this specific potential

dz/(z — a)? — (21 — a)?.
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Using the integral
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In the limit where V(0) = mw?a? > E, the above expression reduces to

we find

mwa2
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. Vibrational and rotational Spectra in Born-Oppenheimer Approximation (8 points)

(a) (5 points) Define a convinient dimensionless variable y = (R — Ry)/Rp. In terms of this

new variable &(y, J) is given by,

mw?R? ,  J(J+1)R?
>V TRy 1 1)2
b

(y+1)*

E(y,J) =
= ay2+

Notice that the ratio,

b rotational energy
-~ : < 1.
a  vibrational energy

Now we minimize £ w.r.t. y, to get the equation

b
Since both b/a < 1 and ymin = IR/Ry < 1, we can slove the equation above order by order
in b/a. To the least order in the ratio b/a we get, ymin = b/a. [Note: To the next leading we
solve the quadratic equation 3y 4+ y = b/a to get Ymin = b/a — 3b?/a?. This comment is for
illustration purpose only. Result only upto leading order in b/a is required for part (b). Full

credit must be provided for solutions upto leading order in b/a.] Therefore,

B B J(J + 1)n?
Rpmin = Ro + YminRo = Ro + TR
(b) (3 points) Using the form R, = Ro(1 4+ b/a), we get

J(J + 1R

g - 20
mRmin
B J(J+1)R*
2mR2(1+ b/a)?

J(J 4+ 1)h? 2b b?
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Substituting for b = J(J + 1)i*/2mR3 and a = mw?RZ/2 in the above expression we obtain,

g U+ DR?  JA(J +1)%!
T T omR? m3w? RS

From this we readily obtain A = h*/2mR3 and B = —h*/m>?w?RS.

. Adiabatic Spin Rotation (6 points)

The adiabatic theorem tells us that, provided we change the magnetic field slowly enough,
the particle will remain in the same (slowly varying) energy level provided that the particle
never reaches a point in its trajectory where energy levels become degenerate. (The proof
of the adiabatic theorem relies on being able to choose timescales larger than %/(AE); when
AFE = 0, this is impossible. There is no way to suppress the transition amplitudes between
exactly degenerate states.) The residual field 6B = (Bz, By, 0) ensures that at ¢t = By/(3, the
two spin states are still non degenerate. This is all that we need to know to conclude that at
ts the particle’s final state is | |), independent of the details of 6§, provided that we change
B. slowly enough.

The closest splitting between the two energy levels occurs at ¢ = By/. Here the difference
in the energy between the two states is AF = 2ug|dB|, and so the shortest timescale of the
system is t; = fi/(2ug|0B|). The amount of time that the system spends in this “dangerous”
region is of the order of t4; = 2'%]3‘, since this is the length of time during which the residual
magnetic field 0B is larger than the magnetic field By — $t. We therefore identify the adiabatic

timescale as t4. For the adiabatic theorem to apply, we must have tg > tg, or

piol0B|?
g < B

(Here I have dropped numerical factors of order unity.) This result shows why, in magnetic

traps, one does not allow the magnetic fields to be 0. When B = 0, the two spin states become
degenerate, and the adiabatic theorem breaks down. This means that the spins can flip, and

atoms can leak out of the traps.

. Engineering Adiabatic Transitions (8 points)
(a) (2 points) In the basis {|+),]0),|—)}, the spin matrices are

5 0 1 0 B 0 — O 1 0 0
Se=—4=1] 1 0 1 |, Sy =—= 0 — |, S.=h| 0 0 O
V2 V2
010 i 0 00 -1
These matrices satisfy [S;,S;] = i€;;xhSk, as any self-respecting set of angular momentum
matrices must.
(b) (4 points) The Hamiltonian has the form
—240(Bo — Bt) — ¢ —V2uoB, 0
H= _\/§MOB$ 0 _\/i,uOBa:
0 7\5}1031 2‘LLO(B0 — ﬁt) —C
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Figure 2: The energy levels of the system without B,.

We need to sketch the behavior of the energy levels of the system as we vary the time t. The
hierarchy of energies that we are given, poBo > ¢ > poB, tells us that we can get a rough
picture of the energy levels by temporarily ignoring B,. Without the contributions of the
B, fields, the energy levels of the system vary with time as shown in figure 2. Notice that if
B, were 0, we could not use the adiabatic theorem to analyze this system, because it is not

applicable when the eigenvalues cross each other.

The contributions of the B, term (which we can treat as a perturbation) become important

when the differences between the eigenvalues of Hy = —2’5‘) S.B, — h%Sf are small. We can

see from figure 2 that we will need to take the B, perturbation into account at all three places
where the unperturbed energy levels intersect; the effect of the perturbation will be to lift the

(instantaneous) degeneracies at these intersections.

When 8t = By — ¢/(20), |0) and |—) are degenerate. To find the correction to the energy
levels from the nonzero B,, we need to diagonalize the instantaneous Hamiltonian within the

degenerate subspace at this crossing point,
0 1
H:—\@pon< - )

The eigenvalues of the above Hamiltonian are :t\/iuo B, and therefore the effect of the nonzero

B, here is to open up a gap of width 2v/20B, between the two energy levels.

When gt = By, the energy levels |[+) and |—) are degenerate. Diagonalizing the Hamiltonian
at t = By/f3 tells us that a gap of 4u3B2/c opens up between the degenerate energy levels at
this point. Notice that this is only a small gap when ¢ > poB;-
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Figure 3: Sketch of the evolution of the energy levels.

Therefore, the effect of the magnetic field B, is to open up gaps between energy levels that,
in the absence of B,, would intersect. The energy levels of the system as a function of time
look like the sketch in figure 3.

(¢c) (2 points) If we begin in the state |—) at ¢ = 0, then the smallest gap we will encounter as
we vary the magnetic field has a width of AE = 2v/2p9B,. The statement B, > hB/B; in
the given hierarchy of energies is precisely the adiabatic condition for this gap, as we can see
by reasoning similar to what we used on problem 5. As before, the adiabatic timescale is the
amount of time that the system spends traversing the dangerous region near the small gap,
to = By /f. This time needs to be much larger than the timescale determined by the energy
difference, t; = i/ AE. This condition, t, > ts, is precisely the statement that 1B, > 15/ B,.
Therefore, the variation of the magnetic field is sufficiently slow compared to the gap for the
adiabatic theorem to apply. Thus, a particle that begins in the state |—) initially will follow
the top level in the sketch of figure 3 without making any transitions to other energy levels.
We can conclude that this particle will evolve to a state first approximately equal to |0) and
then |+).

To have this particle end up in the state |0), we could stop varying the magnetic field once we
reach the point t = By/[3.



