Quantum Physics III (8.06) Spring 2004
FINAL EXAMINATION
Wednesday May 19, 1:30 pm
You have 3 hours.

There are 9 problems, totalling 180 points. Do all pfob—

lems.

Answer all problems in the blue books provided.

Write YOUR. NAME on EACH blue book you use.
Budget your time wisely, using the point values as a
guide. Note also that shorter problems may not always

be easier problems.

No books, notes or calculators allowed.



Some potentially useful information

» Schrédinger equation p
ih—= () = HE)[b (1))

¢ Conservation of Probability

where

where ,
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¢ Harmonic Qscillator

- 1 i
H = Er—r;ﬁz + Emwzﬁ
where
[£,8] = ik .
This Hamiltonian can be rewritten as
. - 1
H=hw (N + 5)

where N = a'd, and the operators & and af are given by

1 o 1
(mwi +1ip) , al=
2mwh 2mwh

d= (mwi — ip) ,

and satisfy
[a,al] =1.
The action of & and a' on eigenstates of N is given by

i'lny =vn+1Iln+1), an)=+mn-1).

The ground state wave function is

mu 174 mw o
@)= (75) oo (-Gre) .



e Gaussian integral
+00
f dz exp (—ax2) = \/z
—00 a

o Spherical Coordinates

r=rsinfcos¢; y=rsinfsing; z=rcosd
dz?  Oyr 022 or2  ror  r?2 \ 082 08 = sin’ 0¢?

¢ Angular Momentum

L, = ipy — s
[Li, L] = ihely 5 [L% 1] =0
LA, m) = R+ D)|g,m) ; L)€, m) = hm|L, m)
Ly=1L,+iL,
(L, I =0; [Ly,L]=2nL,
=L, L +1?-nL,
Lile,m) = m/2(€+1) — m{m £ 1)|f,m £ 1)

e Angular momentum operators in spherical coordinates
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e Spherical Harmonics |
' Yem(0,¢) = (0, 8¢, m)

1 3. . _ [z

Yo0(6,¢) = Jin Vi41(0,0) = F -8—ﬂ_s1n6exp(:i:ng) i Yie(8,¢) = o cosf
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Y2 12(0,¢) = 35, S fexp(£2id) ; Yo (f,¢)=F 'é;SlDQCOSanP(iWS) ;

Ya0(6, ¢) = \/1_2"7? (3cos®6 - 1)



¢ Hydrogen atom

Energy eigenvalues are E, = —FE;/n® where n, the principal quantum number, is a
positive integer, and Ey = me*/2h% ~ 13.6 eV.

Bohr radius is ag = A?/me?

Wave functions for states which are eigenstates of H, L? and L, have the form ¢y, ¢, (7) =
%un,ﬂcf")},ﬂ,m (9: ¢)ﬂ where

2r
Un=1¢=0 (?") = '3_/2 exP(_T/a’U)
2]

2r T .
Une=z =0 (1) = (_W (1 — 53;) exp(—r/2ay)

1 1 72
Un=2,£=1(T) = “\/—EWG—O EXP(“'T/QGO)

¢ Some useful constants:

he=197 x 1077 eV em
The mass of the electron is m, = 0.511 MeV/c2. If B is 1 gauss, then the force eB is
300 eV /cm.
o Particle in an Electric and/or Magnetic Field:
The Hamiltonian for a particle with charge ¢ in a magnetic field B = V x A and an

electric field £ = -f;'gb is:

= (5-24) +a0 (1)

2m

¢ Gauge invariance:

If 9(Z, t) solves the Schridinger equation defined by the Hamiltonian (1), then

V@0 = e (32739 6(5,1)

—

solves the Schrédinger equation obtained upon replacing A by 4' = 4 — ¥ f and
replacing ¢ by ¢ = ¢ + (1/c)df/ot.



¢ Time independent perturbation theory:

Suppose that
H=H"+H

where we already know the eigenvalues E? and eigenstates [10) of H°:
H'|yn) = Eplyn) -

Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

|2
Ep = Ep + H, + Z mEO

m;én

[a) = )+EE0 7 1Vm) +

m#En

where H. = (Y2 H'|¢0).

e Connection Formulae for WKB Wave Functions:

At a turning point at £ = a at which the classically forbidden region is at z > a:

;(x) o8 [E fm ap(a:’)dx’-—-z-] — —ﬁexp[ 711 i (a:')d:c’]

\/:_m) exp [-i—% /:c n(a:')dx’]

At a turning point at z = b at which the classically forbidden region is at z < b

\/g%cos [% j:p(:r’)dx' + g—] -

:(m) exp.[—% /:rc(m’)da:’] — \/I%cos [—% /:p(:r')d:r' — g]

\/:‘@exp [+% :n(:v')dm'] - JI%COS 5 [ pla)as' + ]




¢ Born Approximation to Scattering Amplitude:

m

F(6,6) = £(@) = —5 [ drexp(~ig- V(D)

where §= K — k is the momentum transfer.

e Partial Wave Analysis of Scattering from a spherically symmetric potential:

exp(2id;) — 1

£(6) = Y(20+ 1) (cos ) R

4
o= .!;’zi 3 (2 + 1) sin? 6,
14

e Legendre Polynomials

PU(Z) = 1
Pz) = =
322 -1
Pz(z) = 2
528 — z
Py(z) = —5

e Time Dependent Perturbation Theory:

Consider a system with the Hamiltonian
H = Hy + V() cos(wt) exp(—t?/T?)

and denote the matrix element of V' between eigenstates of Hy named |e) and |b) by
Vap- Then, in the large T" limit, if the system is initially in state |a), the probability
that it is in the state {b) for t — +oo is:

T .
Py = WIV@|25(W - wab)'\/"?T

where fiw,, = Ey ~ E,.



1. Which of these states are degenerate? (15 points)

Consider the n = 2 states of hydrogen. Do not ignore spin in this problem.

(a} (5 points) What are the quantum numbers of the n = 2 eigenstates of the Hamil-
tonian, including fine structure? Specify which states are degenerate.

(b) (2 points) Now including both the fine structure and the Lamb shift, which of
these states are degenerate?

(c) (3 points) Turn on a weak magnetic field. Including fine structure effects, but
neglecting the Lamb shift, which states are degenerate?

(d) (5 points) Now make the magnetic field very strong, ignore fine structure and the
Lamb shift, and assume the magnetic field dependent term in the Hamiltonian
is proportional to B - (I-: + 25) What are the quantum numbers of the n = 2
eigenstates of the Hamiltonian? Specify which states are degenerate.

2. Fermions in a Box (15 points)

Consider the ground state of N noninteracting nonrelativistic spin-1/2 fermions with
mass m in a L X L x L cubic box. Assume the wave functions satisfy periodic boundary
conditions. Assume that N is very large - think of it as of order 10% if you like. What
is the ground state energy of the N fermions? (Your answer should depend on N, L,
m and constants of nature.)

3. Exciting a Hydrogen Atom (10 points)

Ignore spin in this problem.

A hydrogen atom initially (i.e. at £ & —oo) in its ground state is exposed to a pulse
of ultraviolet light that can be thought of as a time varying electric field which points
precisely in the z-direction at all times and whose magnitude is given by

IB(t)] = By cos{wt) exp(~£/T?) ,
with Ep, w and T all constants. The frequency w satisfies
8

The constant T is large compared to all other timescales in the problem.

At t — +o0, the atom is, in general, in some superposition of energy eigenstates.
Working to first order in time-dependent perturbation theory, what are all the state(s)
that could arise in this superposition? (Specify the state(s) by their quantum numbers
n, £ and m.)



4. Perturbing a Three-Dimensional Harmonic Oscillator (18 points)

A particle of mass m moves in a three dimensional harmonic oscillator, with Hamilto-
nian

) 2.2
H°=£—- TUWT
2m+ 2

You know that the energy eigenstates can be labelled by the occupation numbers in
the z, ¥, and z directions:

e

|nmny3 nz) =
Nginy!n,!

Suppose the oscillator is perturbed by adding an interaction of the form
H = \zyz
where A is a small constant.
(a) (10 points) What is the energy of the state |ng, n,, n,) to first order in A? Make

sure to justify your answer carefully.

(b) (8 points) What is the energy of the ground state to second order in A?

5. A Variational Problem (22 points)

Consider a particle with mass m moving in the one-dimensional potential
Viz) = Ar*,
with A a positive constant.

(a) (18 points) Consider a single-parameter ansatz for the wave function consisting
of ground-state wave functions for a simple harmonic oscillator with frequency w,
where w is the variational parameter. Find the value of w that minimizes (H)
and obtain an upper bound on the ground state energy.

(b) (4 points) Write down a one-parameter ansatz that you could use, with the vari-
ational principle, to obtain an upper bound on the energy of the first excited
state. Explain the reasoning behind your choice of ansatz, but do not go farther
with the calculation than writing down an ansatz.



6. A Time-Dependent Two-State System (15 points)

Consider a two-state system with basis vectors |1), |2). In this basis the Hamiltonian

is
i . 7l
B cos (Z) sin (“2’1’
O\ sin(Zt) —cos(Zt '
o 5

At time £ = 0, the state of the system is |1).
Denote the state at time ¢ by |(¢))

Ey and T are constants.

(a) (3 points) What criterion must 7" satisfy in order for the time evolution in this
system to be well-approximated as adiabatic?

(b) (6 points) In parts (b) and {c), assume that the criterion of part (a) is satisfied.
What is |{(y(T)[1)* ?

(c) (6 points) What is |1/(4T"))? Make sure to include the correct overall phase. [Note:
you do not have time to derive the overall phase from scratch; this part of the

problem tests whether you understand and remember enough to come up with it.
_If you do not, move on.]



7. Semiclassical Approximation (25 points)

(a)

(b)

(6 points) Write down the semiclassical wave function for a particle in a classi-
cally allowed region, and explain how it incorporates the classical notion that the
particle spends more time in regions where it moves slowly.

(10 points) Consider a particle with mass m moving in one dimension in the
potential
V(z) = Az,

where A is a positive constant. Derive an expression that determines the bound
state energies in this potential in the semi-classical approximation. [Your expres-
sion will include an integral; do NOT attempt to evaluate the integral.]

(9 points) A particle of mass m is trapped in a “quasibound state”, meaning that
classically it is bound but quantum mechanically it can escape by tunnelling. The
potential is sketched here, with the energy F of the quasibound state indicated

on the sketch:
A

V(x)

——W -

You have done a calculation and found that the probability the particle tunnels
out of its quasibound state during the coming year is 107'%, The result of your
calculation includes a prefactor, and an exponential term. In the following, you
may ignore changes in the prefactor.

i. Suppose the mass of the particle were 2m instead of m. What would the
probability that the particle tunnels out of its quasibound state during the
coming year be?

ii. Suppose the width of the barrier, shown in the sketch, were 2W instead of W.
What would the probability that the particle tunnels out of its quasibound
state during the coming year be?

iii. Suppose the height of the barrier, V; — E, were doubled. What would the

probability that the particle tunnels out of its quasibound state during the
coming year be?
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8. Electron in Crossed Electric and Magnetic Field (30 points)

Consider an electron in a uniform magnetic field é = (0,0, By) and a uniform electric
field E = (0, Ey,0). Assume that the particle is restricted to move in the zy-plane.

(a) (5 points) Write the Hamiltonian in a gauge in which p, commutes with H.

(b) (15 points) Let wy, = gff- (the Larmor frequency) and vp = “—g‘f (the classical drift
velocity). Show that for any value of a and any n =0,1,2,... there is an energy
eigenstate with energy tmov} — ¢Fa + (n + ;)hw,. Relate a to a property of the
wave functions of the energy eigenstates.

(c) (5 points) Suppose now that, instead of being free to move anywhere within an
infinite plane, the electron is required to stay within a bounded extent in y, say
~L/2 < y < L/2. Does this restrict the allowed values of a or n? If so, how?

(d) (5 points) Suppose now that the electron is required to stay within a bounded
extent in z, say —W/2 < 2 < W/2. Does this restrict the allowed values of a or

n? If so, how? A qualitative answer will suffice.

9. Scattering From a §-Function Shell (30 points)

Consider s-wave (£ = 0) scattering of particles with mass m from the potential

h?
V(r)= A%d‘(r - b).

In this problem, we will only investigate very low energy scattering, fully specified by
the scattering length.

Recall that at large r the s-wave radial wave function is

R(r) x %u(r)
with
u(r) = sin(kr — do} .

And, recall that the scattering length o is defined by

. tandg
lim = —a
k—0

(a) (6 points) What is the scattering amplitude f and the total cross-section o for
low energy scattering? Your answers may depend on a and/or k, but should not
depend on parameters of the potential (except via the fact that a does).

(b) (6 points) Use the Born approximation to evaluate the scattering amplitude and
the total cross-section, and from that deduce the scattering length a, assuming
that |A| is small.

11
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(d)

(6 points) In parts (c), (d) and (e}, do not assume that |}| is small. Before doing
parts {c) and (d), make sure you read through the entire rest of the problem,
including the note at the bottom.

Suppose A < 0. Sketch u(r) at very small k for several values of |}|, beginning
with small |A| and increasing. Label a on each of your sketches. If there are
“special” values of |A| for which a is either infinite or zero, make sure to note this,
and provide sketches for such cases. You need not determine the numerical value
of any “special |A|’s”.

(6 points) Suppose A > 0. Sketch u(r) at very small k for several values of )|,
beginning with small |A| and increasing. Label a on each of your sketches. If there
are “special” values of || for which a is either infinite or zero, make sure to note
this, and provide sketches for such cases. You need not determine the numerical
value of any “special |A|’s”. |

(6 points) Use the results of your graphical analyses in parts (c) and (d) to make
a plot showing a(A) for —oo < A < 0o. Your plot of a(}) should have the correct
behavior for |A| near zero, for A — —oc, and for A — 400, and should be labelled
clearly enough so that a grader can see that you understand all these limits. Your
plot should also highlight the existence of any “special” values of ).

[Note: In both parts (c) and (d) I bave asked you to use graphical methods to
determine the qualitative dependence of a on the parameter ). If you want to,
you may instead solve the problem analytically in full, obtaining an analytical
expression for a(}). If you do this correctly, you will get full credit for parts (c)
and (d). Your plot in part (e) should then be based on your analytical solution,
and instead of just indicating the existence of special values of ) it must give their
numerical values.]
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