
Quantum Physics III (8.06) Spring 2005

FINAL EXAMINATION

Tuesday May 17, 1:30 pm

You have 3 hours.

There are 12 problems, totalling 180 points. Do all prob-

lems.

Answer all problems in the blue books provided.

Write YOUR NAME on EACH blue book you use.

Budget your time wisely, using the point values as a

guide. Note also that shorter problems may not always

be easier problems.

No books, notes or calculators allowed.
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Some potentially useful information

• Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉

• Conservation of Probability

∂

∂t
ρ(~r, t) + ~∇ · ~J(~r, t) = 0

where

ρ(~r, t) = |ψ(~r, t)|2 ; ~J(~r, t) =
h̄

2im

[
ψ∗~∇ψ − ψ~∇ψ∗

]
• Operators for Spin-1/2 particle

Ŝi =
h̄

2
σi

where

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)

• Harmonic Oscillator

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2

where

[x̂, p̂] = ih̄ .

This Hamiltonian can be rewritten as

Ĥ = h̄ω
(
N̂ +

1

2

)

where N̂ = â†â, and the operators â and â† are given by

â =
1√

2mωh̄
(mωx̂+ ip̂) , â† =

1√
2mωh̄

(mωx̂− ip̂) ,

and satisfy

[â, â†] = 1 .

The action of â and â† on eigenstates of N̂ is given by

â†|n〉 =
√
n+ 1|n+ 1〉 , â|n〉 =

√
n|n− 1〉 .

The ground state wave function is

〈x|0〉 =
(
mω

πh̄

)1/4

exp
(
−mω

2h̄
x2
)
.
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• Gaussian integral ∫ +∞

−∞
dx exp

(
−ax2

)
=

√
π

a

• Spherical Coordinates

x = r sin θ cosφ ; y = r sin θ sinφ ; z = r cos θ

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

• Angular Momentum

L̂z = x̂p̂y − ŷp̂x

[L̂i, L̂j] = ih̄εijkL̂k ; [L̂2, L̂i] = 0

L̂2|`,m〉 = h̄2`(`+ 1)|`,m〉 ; L̂z|`,m〉 = h̄m|`,m〉

L̂± = L̂x ± iL̂y

[L̂±, L̂
2] = 0 ; [L̂+, L̂−] = 2h̄L̂z

L̂2 = L̂+L̂− + L2
z − h̄Lz

L̂±|`,m〉 = h̄
√
`(`+ 1)−m(m± 1)|`,m± 1〉

• Angular momentum operators in spherical coordinates

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

L̂z = −ih̄ ∂
∂φ

; L̂± = h̄e±iφ

(
± ∂

∂θ
+ i cot θ

∂

∂φ

)

• Spherical Harmonics

Y`,m(θ, φ) ≡ 〈θ, φ|`,m〉

Y0,0(θ, φ) =
1√
4π

; Y1,±1(θ, φ) = ∓
√

3

8π
sin θ exp(±iφ) ; Y1,0(θ, φ) =

√
3

4π
cos θ

Y2,±2(θ, φ) =

√
15

32π
sin2 θ exp(±2iφ) ; Y2,±1(θ, φ) = ∓

√
15

8π
sin θ cos θ exp(±iφ) ;

Y2,0(θ, φ) =

√
5

16π

(
3 cos2 θ − 1

)
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• Hydrogen atom

Energy eigenvalues are En = −EI/n
2 where n, the principal quantum number, is a

positive integer, and EI = me4/2h̄2 ∼ 13.6 eV.

Bohr radius is a0 = h̄2/me2

Wave functions for states which are eigenstates ofH, L2 and Lz have the form ψn,`,m(~r) =
1
r
un,`(r)Y`,m(θ, φ), where

un=1,`=0(r) =
2r

a
3/2
0

exp(−r/a0)

un=2,`=0(r) =
2r

(2a0)3/2

(
1− r

2a0

)
exp(−r/2a0)

un=2,`=1(r) =
1√
3

1

(2a0)3/2

r2

a0

exp(−r/2a0)

• Some useful constants:

h̄c = 197× 10−7 eV cm

The mass of the electron is me = 0.511 MeV/c2. If B is 1 gauss, then the force eB is

300 eV/cm.

• Particle in an Electric and/or Magnetic Field:

The Hamiltonian for a particle with charge q in a magnetic field ~B = ~∇ × ~A and an

electric field ~E = −~∇φ is:

H =
1

2m

(
~p− q

c
~A
)2

+ qφ (1)

• Gauge invariance:

If ψ(~x, t) solves the Schrödinger equation defined by the Hamiltonian (1), then

ψ′(~x, t) = exp
(
iq

h̄c
f(~x, t)

)
ψ(~x, t)

solves the Schrödinger equation obtained upon replacing ~A by ~A′ = ~A − ~∇f and

replacing φ by φ′ = φ+ (1/c)∂f/∂t.
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• Time independent perturbation theory:

Suppose that

H = H0 +H ′

where we already know the eigenvalues E0
n and eigenstates |ψ0

n〉 of H0:

H0|ψ0
n〉 = E0

n|ψ0
n〉 .

Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

En = E0
n +H ′

nn +
∑
m6=n

|H ′
nm|2

E0
n − E0

m

+ . . .

|ψn〉 = |ψ0
n〉+

∑
m6=n

H ′
mn

E0
n − E0

m

|ψ0
m〉+ . . .

where H ′
nm ≡ 〈ψ0

n|H ′|ψ0
m〉.

• Connection Formulae for WKB Wave Functions:

At a turning point at x = a at which the classically forbidden region is at x > a:

2√
p(x)

cos
[
1

h̄

∫ a

x
p(x′)dx′ − π

4

]
← 1√

κ(x)
exp

[
−1

h̄

∫ x

a
κ(x′)dx′

]
1√
p(x)

cos
[
1

h̄

∫ a

x
p(x′)dx′ +

π

4

]
→ 1√

κ(x)
exp

[
+

1

h̄

∫ x

a
κ(x′)dx′

]

At a turning point at x = b at which the classically forbidden region is at x < b:

1√
κ(x)

exp

[
−1

h̄

∫ b

x
κ(x′)dx′

]
→ 2√

p(x)
cos

[
1

h̄

∫ x

b
p(x′)dx′ − π

4

]
1√
κ(x)

exp

[
+

1

h̄

∫ b

x
κ(x′)dx′

]
← 1√

p(x)
cos

[
1

h̄

∫ x

b
p(x′)dx′ +

π

4

]
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• Born Approximation to Scattering Amplitude:

f(θ, φ) = f(~q) = − m

2πh̄2

∫
d3r exp(−i~q · ~r)V (~r)

where ~q = ~k′ − ~k is the momentum transfer.

• Partial Wave Analysis of Scattering from a spherically symmetric potential:

f(θ) =
∑

l

(2`+ 1)Pl(cos θ)
exp(2iδ`)− 1

2ik

σ =
4π

k2

∑
`

(2`+ 1) sin2 δ`

• Legendre Polynomials

P0(z) = 1

P1(z) = z

P2(z) =
3z2 − 1

2

P3(z) =
5z3 − z

2

• Time Dependent Perturbation Theory:

Consider a system with the Hamiltonian

H = H0 + V (~r) cos(ωt) exp(−t2/T 2)

and denote the matrix element of V between eigenstates of H0 named |a〉 and |b〉 by

Vab. Then, in the large T limit, if the system is initially in state |a〉, the probability

that it is in the state |b〉 for t→ +∞ is:

Pa→b =
π

2h̄2 |Vab|2δ(ω − ωab)
√
πT

where h̄ωab = Eb − Ea.
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1. True or False? (16 points)

Is each of the following statements is true or false? If true, simply write the word

“True”. If false, you must briefly explain why or in what way the statement it is false.

(a) The relativistic correction, spin-orbit correction, and Lamb shift are all effects on

the spectrum of hydrogen that are smaller than the spacing between Bohr levels

by a factor of v2/c2, v being the velocity of the electron in a hydrogen atom.

(b) The hydrogen atom can never have an electric dipole moment, since none of its

energy eigenstates have electric dipole moments.

(c) The energy eigenstates of a hydrogen atom in a very strong magnetic field are

eigenstates of J2 and Jz.

(d) The energy eigenstates of a hydrogen atom in a very weak magnetic field are

eigenstates of J2 and Jz.

(e) A hydrogen atom excited into its 2s-state decays back to the ground state by

the spontaneous emission of a photon much more quickly than a hydrogen atom

excited into one of its 2p-states does.

(f) In analyzing the “Landau problem” — namely the motion of an electron in a two-

dimensional (x, y)-plane that feels a magnetic field perpendicular to the plane —

it is always possible to choose a gauge such that the Hamiltonian commutes with

both px and py.

(g) The degeneracy of a Landau level increases with increasing magnetic field, and so

does the separation in energy between Landau levels.

(h) If the two-dimensional plane is finite in extent, say L long by W wide, and if a

small but nonzero electric field is applied in a direction parallel to the plane, then

the Landau level degeneracy is completely broken: no energy level is degenerate.

2. Mini-Essay (20 points)

Write a short description — say one paragraph of text, possibly with sketched figures

in addition – of ONE of the following topics. Using equations is neither required nor

forbidden. However, you should focus on a clear description in words and perhaps

pictures. If you do draw figures, make sure to label them clearly.

(a) The Integer Quantum Hall Effect

(b) The MSW Mechanism and the Solar Neutrino Problem

(c) The Born-Oppenheimer Approximation

(d) The Aharonov-Bohm Effect

To repeat, you need only write about ONE of the above topics.
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3. Dimensional Analysis of a Degenerate Fermi Gas (10 points)

A gas of fermions at zero temperature has a pressure P proportional to the number

density (n) raised to some power (γ):

P = Knγ .

In general, the constant K may depend on three constants: h̄, c, and the fermion mass

m.

(a) (5 points) On which of the above three constants does K depend for a non-

relativistic Fermi gas? Use dimensional analysis to find the numerical value of γ,

and the dependence of K on the constants, for a non-relativistic Fermi gas.

(b) (5 points) On which of the above three constants does K depend for an ultra-

relativistic Fermi gas? Use dimensional analysis to find the numerical value of γ,

and the dependence of K on the constants, for an ultra-relativistic Fermi gas.

4. Stark Effect in Hydrogen (10 points)

Consider the first excited state of hydrogen. (The n = 2 level.) In this problem, you

may neglect all fine and hyperfine structure, and may neglect spin. You need not show

any calculations.

(a) (2 points) List the states in the n = 2 level, using the standard |n`m〉 notation.

(b) (8 points) In the presence of a constant applied electric field in the z-direction,

the degeneracy among these states is broken. What are the n = 2 eigenstates of

the Hamiltonian in the presence of a weak applied electric field? Which of these

states, if any, have the same energy as they would in the absence of an electric

field?
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6. Adiabatic Evolution in a Time-Dependent Two-State System (13 points)

Consider a two-state system with basis states |1〉 and |2〉, and with a Hamiltonian

given in this basis by

H = Aσ3 +Bσ1

(a) (6 points) Suppose B is constant and A(t) is a slowly varying function of time.

Suppose the system is in the state |1〉 in the distant past. Explain how to choose a

function A(t) such that the system transforms to the state |2〉 in the distant future.

Give an example of such a function A(t). What combinations of parameters

(including parameters that you use in the specification of your A(t)) must be

small in order that your transformation works?

(b) (7 points) Now suppose both A and B vary with time, with A(t) = K cos ft and

B(t) = K sin ft where K and f are constants. Assume that f is very small, and

the adiabatic approximation can therefore be applied. Suppose the system is in

the state |1〉 at t = 0. What is the phase of the state at time T = 2π/f compared

to the phase at t = 0? Be sure to include both the dynamical phase and the Berry

phase.

7. WKB on a Ring (10 points)

A particle of mass m moves on a ring of circumference L. It is subject to a potential

V (s), for 0 < s < L. Here, s is the coordinate specifying position on the ring. Of

course, V (0) = V (L). Assume that the particle has a large enough energy E that

E > V (s) everywhere on the ring.

(a) (5 points) What is the quantization condition on the energy eigenvalue E, in the

WKB approximation?

(b) (5 points) Within the WKB approximation, how many degenerate states are there

for each energy eigenvalue? What is (are) the wave function(s) for the state(s)

with eigenvalue E? [You need not normalize the wave functions.]
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8. Low Energy Scattering, in Pictures (12 points)

Consider s-wave scattering off an attractive central potential in three dimensions, which

we take to be simply V = −V0 for r ≤ b and V = 0 for r > b.

(a) (7 points) There are certain special values of V0 for which the low energy scattering

cross section for scattering from this potential diverges. Make a clear sketch

showing the radial wave function u(r) which describes scattering in the zero-

energy limit for one of these special values of V0. As V0 is changed from just

above this special value to just below, what qualitative change occurs in the

spectrum of the Hamiltonian?

(b) (5 points) There are certain other special values of V0 which are nonzero and for

which the low energy scattering cross section for this potential nevertheless van-

ishes. Make a clear sketch showing the radial wave function u(r) which describes

scattering in the zero-energy limit for one of these special values of V0.

9. A Scattering Cross Section (12 points)

An experimentalist studies scattering from a central potential V (r) in three dimensions.

After lots of work, she measures a cross section as a function of scattering angle θ and

momentum k, where k2 = 2mE/h̄2, and finds:

dσ

dΩ
= A(k) +B(k) cos θ + C(k) cos2 θ

(a) (3 points) What partial waves (i.e. waves with what values of orbital angular

momentum quantum number `) are scattering?

(b) (5 points) Write A(k), B(k) and C(k) in terms of phase shifts δ`.

(c) (4 points) What is the total cross section?
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10. A Variational Problem (22 points)

A particle of mass m moves in the one dimensional potential V (x) = λxp, where p is

a positive even integer.

(a) (18 points) Use the trial wave functions

ψ(x) = exp(−x2/a2) ,

where a is a parameter with the dimensions of length, to obtain an upper bound

on the ground state energy.

You should obtain an answer written in terms of dimensionful parameters of the

problem and constants of nature, some of which will be raised to powers that

depend on p, and a dimensionless coefficient. You may leave the dimensionless

coefficient written in terms of dimensionless integrals. In other words, do not

attempt to evaluate any dimensionless integrals that arise in your calculation.

(b) (4 points) Give an example of a set of trial wave functions, specified by a single

parameter, that could be used to obtain an upper bound on the first excited state

energy. What condition must these trial wave functions satisfy, and why?

11. Perturbations of a Two-Dimensional Harmonic Oscillator (30 points)

Consider a quantum system described by the Hamiltonian

H = H0 +H ′

where H0 is the two-dimensional harmonic oscillator Hamiltonian

H0 =
1

2m
(p2

x + p2
y) +

1

2
mω2(x2 + y2) .

In parts (a) and (b) of the problem, the perturbing Hamiltonian H ′ is given by

H ′ = Kpxpy,

with K a constant.

(a) (15 points) Evaluate the ground state energy to second order in K.

(b) (8 points) Evaluate the energy of the state(s) whose unperturbed energy (ie energy

if K were zero) is 2h̄ω to first order in K.

(c) (7 points) Now set K = 0 and consider a new, time-dependent, perturbing Hamil-

tonian

H ′ = Kp3
y cos Ωt exp(−t2/T 2)

where T � 1/Ω and T � 1/ω. Suppose that initially (i.e. at t → −∞) the

system is in its ground state. For what value(s) of the perturbing frequency Ω

will there be a nonzero probability that the system makes a transition out of its

ground state? For each such frequency, to which excited state(s) are transitions

possible?
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12. WKB Approximation for Scattering from a Central Potential (20 points)

Suppose V (r) is a smooth, deep, central potential in three dimensions which is every-

where attractive. Let U(r) = −2mV (r)/h̄2. Assume U(r)→ 0 quickly as r →∞. The

goal of this problem is to use the WKB approximation to study the positive energy

solutions with ` = 0 in this potential. Define k =
√

2mE/h̄2 as usual.

(a) (3 points) Write the Schrödinger equation for the radial wave function, u(r), and

state any boundary conditions on u. Remember, ` = 0 and E > 0.

(b) (9 points) Use the WKB approximation to find an approximate expression for the

scattering phase shift δ0(k).

(c) (4 points) Show that your result from part (c) does not have the expected behavior,

δ0(k) ∼ −ka, as k → 0. What has gone wrong?

(d) (4 points) Find the leading behavior of δ0(k) as k → ∞. Explain why you do or

do not expect the result you have found to be a good approximation.

OPTIONAL, FOR EXTRA CREDIT: Compare your k →∞ result to that

obtained from the Born approximation to the spherical average of the scattering

amplitude. [Note: maximum extra credit that will be given is 10 points, even

though doing this may take you more than 10 points worth of time. It is optional.]
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