Quantum Physics III (8.06) Spring 2006

FINAL EXAMINATION
Monday May 22, 1:30 pm
You have 3 hours.

There are 11 problems, totalling 180 points. Do all

problems.

Answer all problems in the white books provided.

Write YOUR NAME on EACH white book you use.
Budget your time wisely, using the point values as
a guide. Note also that shorter problems may not

always be easier problems.

No books, notes or calculators allowed.



Some potentially useful information
Schrodinger equation
L d
th— [¥(t)) = H®)|¥(t)
For an energy eigenstate v of energy F

U(t) = e 7" (0)

and the Schrodinger equation reduces to an eigenvalue equation

Hvy = Ev
Harmonic Oscillator
A 1 1
H = %ﬁQ + §mw2£2
where
[z,p] =ik .

This Hamiltonian can be rewritten as
. .1
i = hw (N + 2)

where N = a'a, and the operators @ and a' are given by

a= ! (mwi +1ip) , a = ! (mwz —ip) ,
2mwh 2mwh
and satisfy
[a,a"] =1 .
Conversely
&= QZW(H&T), p= 1\/@(& —a)

The action of @ and a' on eigenstates of N is given by
alln) =vn+1n+1), an)=+vnln—1).

The ground state wave function is

mw /4 mw
@) =(75) ew(-5e) -



e Natural units

In the natural units, the dimension of any physical quantity can be written as
(eV)ohbcd

It is often convenient to set ¢ = h = 1. Then the dimension of any physical
quantity can be written in terms of powers of electron Volts. For example

[e] = (eV)° (dimensionless)

[m] = eV
L] =eV !
[t] =eV !

e Particle in an Electric and/or Magnetic Field:

The Hamiltonian for a particle with charge ¢ in a magnetic field and electric

field

— — — — = 18/1’
B = A E=— R ————
V x A, Vo e
1s: ) )
_ t (_47x
H=g <p CA> + q¢ (1)

Gauge invariance:

If ¢ (&, t) solves the Schrodinger equation defined by the Hamiltonian (1), then
' o -
0@t = exp (=311 0) w(@.0)

solves the Schrodinger equation obtained upon replacing A by A =A-V f
and replacing ¢ by ¢’ = ¢ + (1/c)0f /0t.

e Electron in a magnetic field: spin Hamiltonian

The Hamiltonian for the spin is given by

m
where
57_@5 ﬁ
_2 ) ,uB_Qm
and



Time independent perturbation theory:

Suppose that
H=Hy+ H'

where we already know the eigenvalues E° and eigenstates |¢)0) of HY:
Holy) = EP|,”) .

Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

|2

) = ) *%WW ) + (3)

where H! = (1 (0)|H’|¢(0)>.

If Hy has degeneracy at B, first diagonalize H’ in the corresponding degener-
ate subspace, then use equatlons (2) and (3). In particular |1{?)) (“good states”)
should be one of the eigenvectors of H' in the degenerate subspace.

Connection Formulae for WKB Wave Functions:

At a turning point at x = a at which the classically forbidden region is at x > a:

2 1 fe 1 1 =
cos [h/ p(a')dx’ — Z] — ———exp [_h/ /s(:v’)dx’]
p(z) * r(x) “
1 1 fe 1 1 =
cos [/ p(z')dx' + W] — exp [—l—/ k(z")dx'
h Je 4 :“i(l’) h Ja
At a turning point at x = b at which the classically forbidden region is at x < b:

p(z)
:(z) exp [_711 /zb ,{(zl)dx’] - pQ(x) s {711 /bx S ;j

1 1 /b 1 1 =
exp l#—/ K(I/)d$,] — Cos {/ p(a')dz' + W]
T b

r(2) h o) LA

Bohr-Sommerfeld quantization condition

b 1
dx p(z)dz = (n — §>7Th, n=12--- (4)

a



where a, b are classical turning points. If the potential has a sharp wall on one
side, equation (4) becomes

/abdxp(x):(n—)ﬂh, n=12--- (5)

If the potential has sharp walls on both side, equation (4) becomes
b
/ dx p(x) = nrh, n=12--- (6)

Barrier tunnelling
P~ ef%f:dxn(x)

with

k(z) = \/Qm(V(x) —F)

and a, b classical turning points.

Adiabatic evolution

Under adiabatic change of parameters R of a Hamiltonian H (ﬁ), if the system
is initially in the n-th energy eigenstate, it stays in the same energy eigenstate
as the parameters change and acquires a phase factor

wlt) = e OOl (1)

with 1
[ / dt' E,(R(t"))
h Jo

and

nlt) =i [t (DO (F(ED)

Berry’s phase for a spin—% particle in a magnetic field: for the spin up state

1
=—=0Q
T+ 5 C
where ()¢ is the solid angle subtended by C' at the origin.

Time Dependent Perturbation Theory

Consider a system with the Hamiltonian

H(t)=Hy+ H'(t) .



Denote the matrix element of H' between eigenstates of Hy named |a) and |b)
by H!,. If the system is initially in state |a) at t = ¢, the probability that it is
in the state |b) at time ¢ is:
Py = |e(t)]?

with L -

ap(t) = rn dt’ Hj,(t")e* " Wha =~
If H' is periodic in time, i.e.

H' = V(F) coswt

then the transition rate from a — b in the t — oo limit is

Rop = Vabfz(s(w - wab)

T
on?!
Scattering:

In three dimensions, the wave function () of a particle scattering off a poten-

tial V(7) satisfies the asymptotic boundary condition
ikr

, e
P(7) — e* + 7f(97 }), 7 — 00 (7)
(r,0,¢) are spherical coordinates with the scattering center located at r = 0
and 6 the angle between 7" and z-axis.
Born Approximation to Scattering Amplitude
1(0.0) = (@) = =555 [ drexp(=iq- PV (P

m
onh?

where ¢ = k' — k is the momentum transfer. If V(7 is central, then

2 o)

f(0) = _Tm/ drrV (r)singr

h%q Jo

with
= 2k sin Q

= 2

Polar coordinates in two-dimension

Polar Coordinates
x =pcost; y=psinb;

1 1
Vi o= ;ap(papf) + ?%f (8)
S RO



e Useful integrals



1. True or False (20 points):

(a)

()

(2 points) Coulomb interaction between electrons does NOT play a signif-
icant role in finding the ground energy of the Helium atom.

(2 points) Aharonov-Bohm effect is an example of nontrivial Berry’s phase.

(2 points) In MSW mechanism, a muon neutrino created inside the Sun
is adiabatically turned into an electron neutrino as it propagates through
the Sun.

(2 points) If you dump some matter onto a stable neutron star, increasing
its mass, its radius becomes bigger.

(2 points) Once you include relativistic and spin-orbit corrections, there
are no remaining degeneracies in the hydrogen spectrum (i.e. every energy
eigenstate has a different energy eigenvalue).

(2 points) A charged particle in an electric and magnetic field has an
expectation value of x that is the same in any gauge.

(2 points) A classical computer cannot simulate a quantum computer.

(2 points) Shor algorithm for factorizing a large integer achieves an expo-
nential speedup compared to the best classical algorithm.

(2 points) The ground state of a hydrogen atom in a weak magnetic field
splits into two levels (ignore hyperfine splitting in this problem).

(2 points) Laser is based on the stimulated emission of photons.



2. Short answer questions (10 points)

(a)

(b)

()

(3 points ) In a scattering experiment, how do we measure the scattering
differential cross section?

(2 points) State in words the condition for the validity of the first Born
approximation for scattering.

( 5 points) Consider a diatomic molecule ion with a single electron. Let the
coordinate separation of the two atoms be given by the three component
vector R. Let the coordinates of the electron be described by vector 7.
Ignore spin. The Hamiltonian (in coordinate space) of the full system can
be written as

o, R

==y Ve~ am

2
2MN Vr + VN<R) + ‘/;(Tv R) (10)

The first term is the kinetic energy of the nuclei (M is the reduced mass).
The second is the kinetic energy of the electrons. The third is the Coulomb
potential energy of the two nuclei and the fourth term is the Coulomb inter-
action between the electron and the nuclei. Outline in a few sentences your
strategy of attacking this problem (If necessary, you can include equations
in your answer, but no calculation is required.)



3. The Quantum Dipole-Dipole Interaction (10 points)

When a neutral, but polarizable, molecule is placed in an electric field E, it

develops an induced electric dipole moment d proportional to E ,

-

d=aF . (11)

d has dimensions of chargexlength. The constant « is called the polarizability,

and is a property of the molecule in question.

(a)

(b)

()

(2 points) What are the units for force and electric field in natural units?
(In your answer, you can set h and ¢ to 1.)

(3 points) What are the units of « defined in (11) in natural units? (In
your answer, you can set h and ¢ to 1.)

(5 points) Consider the force between two neutral polarizable molecules.
Quantum fluctuations in one molecule give rise to an electric field that
polarizes the other, and vice versa. This leads to a Casimir force between
the two molecules, with strength given by

=~ (0518 %)
Fl =k

where R is the separation between the molecules, where a; and asy are the
polarizabilities of the two molecules, and where the constant £ can only
depend on & and/or c.

Find the power p by dimensional analysis.

10



4. A Particle in a Weak Electric Field (22 points)

A particle of mass m and electric charge ¢ is confined within a one dimensional

well, with
a
V@) = Vo el <f (12)
a
= — 1
0 > (13)

Assume that Vp > ”2h2, i.e. the wall is deep.

‘maZ?
(a) (5 points) Using the WKB approximation, find the energy quantization
condition for a bound state with £ < 0.

(b) (3 points) Estimate the number of bound states of the system.

A weak external electric field & (in the z-direction) is applied to the sys-
tem. Choose the zero of electrostatic potential ¢ so that ¢(z) = 0 for
x = 0. Assume that V > e&ya.

(¢) (3 points) Now the bound states of the system are no longer stable. Explain
why (use a figure if necessary).

(d) (6 points) Find the barrier penetration factor for the ground state. To
leading order, you can assume that the particle sits at * = 0 with an
energy —Vj.

(e) (5 points) Estimate the life time of the ground state.

11



5. Derivation of band gap from perturbation theory (15 points)

A particle of mass m moves in a one-dimensional box of size L with a periodic
potential

V(z) = Vycos (27:6>

where L = Na, with N a very large even integer (say 10'°). We impose the
periodic boundary condition on wave functions, i.e.

U(x) =d(z + L)
(a) (2 points) What does the Bloch theorem say about the wave functions of

energy eigenstates?

(b) (4 points) First consider Vj = 0. Consider plane waves which satisfy the
condition

¢(z +a) = —¢(z)
What is the energy spectrum for this class of wave functions?

(c) (8 points) Now consider Vj small (i.e. Vy < mh—;), calculate the lowest two

energy eigenvalues by first order perturbation theory for the class of wave
functions considered in (b).

(d) (1 point) Explain the significance of the results of (c).

12



6. A slow field reversal (20 points)

An electron is held in a spin up state along the z-axis by a magnetic field,

B =

(a)

(b)

Byz. An experimenter would like to reverse the electron spin adiabatically.

(3 points) Explain why, if he had the choice he would slowly rotate the
magnetic field until it pointed in the —Z direction, as opposed to slowly
reversing the field.

(3 points) Since it is expensive to rotate a magnet, and cheap to just
reverse the current, the experimenter decides it is almost as good just to
reverse the field, provided he places the apparatus in a weak permanent
magnet with its field B, pointing some direction in the zy-plane. What is
his reasoning?

(4 points) Now suppose the weak permanent magnetic field described in
(b) is along = direction with a magnitude B; < By. The experimenter
slowly reverses the magnetic field along z direction in the following manner
B.(t) = —By% for =T < t < T. Write down the Hamiltonian of the system
during the reversion process.

(5 points) How large T" has to be for the adiabatic condition to be valid.
(derive an inequality that 7" has to satisfy)

(5 points) Now set By = 0. The experimenter slowly rotates the magnetic
field originally pointing in z direction along a full circle in the x — 2 plane
during a time interval T'. In the process he keeps the magnitude By of the
magnetic field fixed. Assuming the adiabatic condition is satisfied, what
is the total phase change for the electron wave function after the magnetic
field returns to its original z-direction? (Hint: the total phase includes
both the dynamical phase and Berry’s phase.)

13



7. Born approximation (12 points)

Consider a particle of mass m scattering off a delta-shell potential in 3d
V(r) = Vobd(r —b)

(a) (5 points) What is the scattering amplitude a particle with energy h;—iz in
the first order Born approximation?

(b) (3 points) What is the differential cross section in the first order Born
approximation?

(c) (4 points) What is the total cross section in the limit k& — 07

14



8. Forced harmonic oscillator (15 points)

Consider an harmonic oscillator perturbed under a time dependent external

potential for t > 0

P’ L5 s
H = %+§mw =+ V(x)f(t)

The system is in ground state |0) at ¢ = 0.
(a) (9 points) Suppose
V(z) = Az, flt)=e*

To lowest order in A what is the probability that system is in n-th state at
t = 00? (You should give explicit expressions for all n > 1.)

(b) (6 points) Now take
V(z) = ¥, f(t) = cosQt

For what values of §2 that the harmonic oscillator has a nonzero probability
(to lowest order in \) to jump to an excited state? (You only need to write
down the answer and give a brief explanation for your answer in words.
No intermediate calculation is required.)

15



9. Two variational proofs (20 points)

(a)

(8 points) Prove that, in time-independent perturbation theory, the sum of
the second order, third order, fourth order plus all higher order corrections
to the ground state energy of a quantum system must be either zero or
negative.

(12 points) Consider a particle of mass m in a one-dimensional potential.
The Hamiltonian is H = % + V(z). The potential has the following
properties:

V(z) < 0 lz] < a (14)

=0 lz| > a (15)

Use the variational principle to prove that there is at least one bound
state solution. [Hint: Take e.g. the trial wave function to be a Gaussian

N (Oz)e’%az‘”2 and consider the limit a small, i.e. the width of the Gaussian
becomes large in the limit.]

16



10. Boundary conditions for scattering problems (20 points)

In three dimensions, the wave function ¢ (7") of a particle scattering off a poten-
tial V (7) satisfies the asymptotic boundary condition

V) = L T f(0.0), o (16)

The first term in (16) is the incoming plane wave along z-direction and the
second term is the scattered spherical wave. (r,60,¢) are spherical coordinates
with the scattering center located at r = 0 and 6 the angle between i and z-axis.

(a) (4 points) If the scattering potential V (7) is central, i.e. V() = V(r), give
argument that f should only depend on 6. Should f (6, ¢) be independent
of 0 as well? Why?

(b) (2 points) Reconsider the question (a) for the limit £ — 0.

(¢) (4 points) Now let us consider a scattering problem in one dimension
(00 < x < +00) with the incoming plane wave in the 4z direction.
What should be the boundary condition we impose on the wave function
(i.e. analogue of (16) for 1d scattering) ?

(d) (10 points) Now let us consider a scattering problem in two dimensions with
the incoming plane wave in z direction. What should be the boundary
condition we impose on the wave function (i.e. analogue of (16) for 2d
scattering)?

17



11. The Landau Problem Revisited (16 points)

Consider a particle of mass m and charge ¢ moving in a uniform magnetic field
B directed along the z-axis. We will only consider the motion in x — y plane.

(a) (8 points) Find the energy spectrum of the particle.

(b) (8 points) Let the wave function of the particle initially (at ¢ = 0) have
the form

\Ij(xay; 0) =¢($>Z/) (17>

Show that the wave function ¥(z,y;t) at time ¢, aside from an arbitrary

phase factor, is periodic in ¢ with a period T', where T' = z—:

is the period
of the classical motion of the particle in the magnetic field and wy, is the

classical cyclotron frequency.

18



