
Quantum Physics III (8.06) Spring 2006

FINAL EXAMINATION

Monday May 22, 1:30 pm

You have 3 hours.

There are 11 problems, totalling 180 points. Do all

problems.

Answer all problems in the white books provided.

Write YOUR NAME on EACH white book you use.

Budget your time wisely, using the point values as

a guide. Note also that shorter problems may not

always be easier problems.

No books, notes or calculators allowed.
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Some potentially useful information

• Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

For an energy eigenstate ψ of energy E

ψ(t) = e−
i
h̄

Etψ(0)

and the Schrodinger equation reduces to an eigenvalue equation

Hψ = Eψ

• Harmonic Oscillator

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2

where

[x̂, p̂] = ih̄ .

This Hamiltonian can be rewritten as

Ĥ = h̄ω
(
N̂ +

1

2

)

where N̂ = â†â, and the operators â and â† are given by

â =
1√

2mωh̄
(mωx̂ + ip̂) , â† =

1√
2mωh̄

(mωx̂− ip̂) ,

and satisfy

[â, â†] = 1 .

Conversely

x̂ =

√
h̄

2mω
(â + â†), p̂ =

1

i

√
h̄mω

2
(â− â†)

The action of â and â† on eigenstates of N̂ is given by

â†|n〉 =
√

n + 1|n + 1〉 , â|n〉 =
√

n|n− 1〉 .

The ground state wave function is

〈x|0〉 =
(

mω

πh̄

)1/4

exp
(
−mω

2h̄
x2

)
.
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• Natural units

In the natural units, the dimension of any physical quantity can be written as

(eV )ah̄bcd

It is often convenient to set c = h̄ = 1. Then the dimension of any physical

quantity can be written in terms of powers of electron Volts. For example

[e] = (eV )0 (dimensionless)

[m] = eV

[L] = eV −1

[t] = eV −1

• Particle in an Electric and/or Magnetic Field:

The Hamiltonian for a particle with charge q in a magnetic field and electric

field

~B = ~∇× ~A, ~E = −~∇φ− 1

c

∂ ~A

∂t
is:

H =
1

2m

(
~p− q

c
~A
)2

+ qφ (1)

Gauge invariance:

If ψ(~x, t) solves the Schrödinger equation defined by the Hamiltonian (1), then

ψ′(~x, t) = exp
(
− iq

h̄c
f(~x, t)

)
ψ(~x, t)

solves the Schrödinger equation obtained upon replacing ~A by ~A′ = ~A − ~∇f

and replacing φ by φ′ = φ + (1/c)∂f/∂t.

• Electron in a magnetic field: spin Hamiltonian

The Hamiltonian for the spin is given by

H =
e

m
~S · ~B = µB~σ · ~B

where
~S =

h̄

2
~σ, µB =

eh̄

2m
and

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
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• Time independent perturbation theory:

Suppose that

H = H0 + H ′

where we already know the eigenvalues E0
n and eigenstates |ψ0

n〉 of H0:

H0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 .

Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

En = E(0)
n + H ′

nn +
∑

m6=n

|H ′
nm|2

E
(0)
n − E

(0)
m

+ . . . (2)

|ψn〉 = |ψ(0)
n 〉+

∑

m6=n

H ′
mn

E
(0)
n − E

(0)
m

|ψ(0)
m 〉+ . . . (3)

where H ′
nm ≡ 〈ψ(0)

n |H ′|ψ(0)
m 〉.

If H0 has degeneracy at E(0)
n , first diagonalize H ′ in the corresponding degener-

ate subspace, then use equations (2) and (3). In particular |ψ(0)
n 〉 (“good states”)

should be one of the eigenvectors of H ′ in the degenerate subspace.

• Connection Formulae for WKB Wave Functions:

At a turning point at x = a at which the classically forbidden region is at x > a:

2√
p(x)

cos
[
1

h̄

∫ a

x
p(x′)dx′ − π

4

]
← 1√

κ(x)
exp

[
−1

h̄

∫ x

a
κ(x′)dx′

]

1√
p(x)

cos
[
1

h̄

∫ a

x
p(x′)dx′ +

π

4

]
→ 1√

κ(x)
exp

[
+

1

h̄

∫ x

a
κ(x′)dx′

]

At a turning point at x = b at which the classically forbidden region is at x < b:

1√
κ(x)

exp

[
−1

h̄

∫ b

x
κ(x′)dx′

]
→ 2√

p(x)
cos

[
1

h̄

∫ x

b
p(x′)dx′ − π

4

]

1√
κ(x)

exp

[
+

1

h̄

∫ b

x
κ(x′)dx′

]
← 1√

p(x)
cos

[
1

h̄

∫ x

b
p(x′)dx′ +

π

4

]

• Bohr-Sommerfeld quantization condition

∫ b

a
dx p(x)dx = (n− 1

2
)πh̄, n = 1, 2, · · · (4)
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where a, b are classical turning points. If the potential has a sharp wall on one

side, equation (4) becomes

∫ b

a
dx p(x) = (n− 1

4
)πh̄, n = 1, 2, · · · (5)

If the potential has sharp walls on both side, equation (4) becomes

∫ b

a
dx p(x) = nπh̄, n = 1, 2, · · · (6)

• Barrier tunnelling

P ∼ e−
2
h̄

∫ b

a
dx κ(x)

with

κ(x) =
√

2m(V (x)− E)

and a, b classical turning points.

• Adiabatic evolution

Under adiabatic change of parameters ~R of a Hamiltonian H(~R), if the system

is initially in the n-th energy eigenstate, it stays in the same energy eigenstate

as the parameters change and acquires a phase factor

ψ(t) = e−iθn(t)+iγn(t)|ψn(~R(t))〉

with

θn =
1

h̄

∫ t

0
dt′ En(~R(t′))

and

γn(t) = i
∫ t

0
dt′ 〈ψn(~R(t′))|∂t′ψn(~R(t′))〉 .

Berry’s phase for a spin-1
2

particle in a magnetic field: for the spin up state

γ+ = −1

2
ΩC

where ΩC is the solid angle subtended by C at the origin.

• Time Dependent Perturbation Theory

Consider a system with the Hamiltonian

H(t) = H0 + H ′(t) .
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Denote the matrix element of H ′ between eigenstates of H0 named |a〉 and |b〉
by H ′

ab. If the system is initially in state |a〉 at t = t0, the probability that it is

in the state |b〉 at time t is:

Pa→b = |cb(t)|2

with

cb(t) =
1

ih̄

∫ t

t0
dt′ H ′

ba(t
′)eiωbat′ , ωba =

Eb − Ea

h̄

If H ′ is periodic in time, i.e.

H ′ = V (~r) cos ωt

then the transition rate from a → b in the t →∞ limit is

Ra→b =
π

2h̄2 |Vab|2δ(ω − ωab)

• Scattering:

In three dimensions, the wave function ψ(~r) of a particle scattering off a poten-

tial V (~r) satisfies the asymptotic boundary condition

ψ(~r) → eikz +
eikr

r
f(θ, φ), r →∞ (7)

(r, θ, φ) are spherical coordinates with the scattering center located at r = 0

and θ the angle between ~r and z-axis.

Born Approximation to Scattering Amplitude

f(θ, φ) = f(~q) = − m

2πh̄2

∫
d3r exp(−i~q · ~r)V (~r)

where ~q = ~k′ − ~k is the momentum transfer. If V (~r) is central, then

f(θ) = −2m

h̄2q

∫ ∞

0
dr rV (r) sin qr

with

q = 2k sin
θ

2

• Polar coordinates in two-dimension

Polar Coordinates

x = ρ cos θ; y = ρ sin θ;

∇2f =
1

ρ
∂ρ(ρ∂ρf) +

1

ρ2
∂2

θf (8)

=
1√
ρ
∂2

ρ(
√

ρf) +
1

4ρ2
f +

1

ρ2
∂2

θf (9)
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• Useful integrals ∫ +∞

−∞
dx exp

(
−ax2

)
=

√
π

a
∫ +∞

−∞
dx x2 exp

(
−ax2

)
=

1

2

√
π

a3

∫
dx x

1
2 =

2

3
x

3
2
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1. True or False (20 points):

(a) (2 points) Coulomb interaction between electrons does NOT play a signif-

icant role in finding the ground energy of the Helium atom.

(b) (2 points) Aharonov-Bohm effect is an example of nontrivial Berry’s phase.

(c) (2 points) In MSW mechanism, a muon neutrino created inside the Sun

is adiabatically turned into an electron neutrino as it propagates through

the Sun.

(d) (2 points) If you dump some matter onto a stable neutron star, increasing

its mass, its radius becomes bigger.

(e) (2 points) Once you include relativistic and spin-orbit corrections, there

are no remaining degeneracies in the hydrogen spectrum (i.e. every energy

eigenstate has a different energy eigenvalue).

(f) (2 points) A charged particle in an electric and magnetic field has an

expectation value of x that is the same in any gauge.

(g) (2 points) A classical computer cannot simulate a quantum computer.

(h) (2 points) Shor algorithm for factorizing a large integer achieves an expo-

nential speedup compared to the best classical algorithm.

(i) (2 points) The ground state of a hydrogen atom in a weak magnetic field

splits into two levels (ignore hyperfine splitting in this problem).

(j) (2 points) Laser is based on the stimulated emission of photons.
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2. Short answer questions (10 points)

(a) (3 points ) In a scattering experiment, how do we measure the scattering

differential cross section?

(b) (2 points) State in words the condition for the validity of the first Born

approximation for scattering.

(c) ( 5 points) Consider a diatomic molecule ion with a single electron. Let the

coordinate separation of the two atoms be given by the three component

vector ~R. Let the coordinates of the electron be described by vector ~r.

Ignore spin. The Hamiltonian (in coordinate space) of the full system can

be written as

H = − h̄2

2MN

∇2
R −

h̄2

2me

∇2
r + VN(R) + Ve(r, R) (10)

The first term is the kinetic energy of the nuclei (MN is the reduced mass).

The second is the kinetic energy of the electrons. The third is the Coulomb

potential energy of the two nuclei and the fourth term is the Coulomb inter-

action between the electron and the nuclei. Outline in a few sentences your

strategy of attacking this problem (If necessary, you can include equations

in your answer, but no calculation is required.)
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3. The Quantum Dipole-Dipole Interaction (10 points)

When a neutral, but polarizable, molecule is placed in an electric field ~E, it

develops an induced electric dipole moment ~d proportional to ~E,

~d = α~E . (11)

~d has dimensions of charge×length. The constant α is called the polarizability,

and is a property of the molecule in question.

(a) (2 points) What are the units for force and electric field in natural units?

(In your answer, you can set h̄ and c to 1.)

(b) (3 points) What are the units of α defined in (11) in natural units? (In

your answer, you can set h̄ and c to 1.)

(c) (5 points) Consider the force between two neutral polarizable molecules.

Quantum fluctuations in one molecule give rise to an electric field that

polarizes the other, and vice versa. This leads to a Casimir force between

the two molecules, with strength given by

|~F | = k
α1α2

Rp

where R is the separation between the molecules, where α1 and α2 are the

polarizabilities of the two molecules, and where the constant k can only

depend on h̄ and/or c.

Find the power p by dimensional analysis.
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4. A Particle in a Weak Electric Field (22 points)

A particle of mass m and electric charge q is confined within a one dimensional

well, with

V (x) = −V0 |x| < a

2
(12)

= 0 |x| > a

2
(13)

Assume that V0 À π2h̄2

ma2 , i.e. the wall is deep.

(a) (5 points) Using the WKB approximation, find the energy quantization

condition for a bound state with E < 0.

(b) (3 points) Estimate the number of bound states of the system.

A weak external electric field E0 (in the x-direction) is applied to the sys-

tem. Choose the zero of electrostatic potential φ so that φ(x) = 0 for

x = 0. Assume that V0 À eE0a.

(c) (3 points) Now the bound states of the system are no longer stable. Explain

why (use a figure if necessary).

(d) (6 points) Find the barrier penetration factor for the ground state. To

leading order, you can assume that the particle sits at x = 0 with an

energy −V0.

(e) (5 points) Estimate the life time of the ground state.
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5. Derivation of band gap from perturbation theory (15 points)

A particle of mass m moves in a one-dimensional box of size L with a periodic

potential

V (x) = V0 cos
(

2πx

a

)

where L = Na, with N a very large even integer (say 1010). We impose the

periodic boundary condition on wave functions, i.e.

ψ(x) = ψ(x + L)

(a) (2 points) What does the Bloch theorem say about the wave functions of

energy eigenstates?

(b) (4 points) First consider V0 = 0. Consider plane waves which satisfy the

condition

φ(x + a) = −φ(x)

What is the energy spectrum for this class of wave functions?

(c) (8 points) Now consider V0 small (i.e. V0 ¿ h̄2

ma2 ), calculate the lowest two

energy eigenvalues by first order perturbation theory for the class of wave

functions considered in (b).

(d) (1 point) Explain the significance of the results of (c).
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6. A slow field reversal (20 points)

An electron is held in a spin up state along the z-axis by a magnetic field,
~B = B0ẑ. An experimenter would like to reverse the electron spin adiabatically.

(a) (3 points) Explain why, if he had the choice he would slowly rotate the

magnetic field until it pointed in the −ẑ direction, as opposed to slowly

reversing the field.

(b) (3 points) Since it is expensive to rotate a magnet, and cheap to just

reverse the current, the experimenter decides it is almost as good just to

reverse the field, provided he places the apparatus in a weak permanent

magnet with its field ~B1 pointing some direction in the xy-plane. What is

his reasoning?

(c) (4 points) Now suppose the weak permanent magnetic field described in

(b) is along x direction with a magnitude B1 ¿ B0. The experimenter

slowly reverses the magnetic field along z direction in the following manner

Bz(t) = −B0
t
T

for −T ≤ t ≤ T . Write down the Hamiltonian of the system

during the reversion process.

(d) (5 points) How large T has to be for the adiabatic condition to be valid.

(derive an inequality that T has to satisfy)

(e) (5 points) Now set B1 = 0. The experimenter slowly rotates the magnetic

field originally pointing in z direction along a full circle in the x− z plane

during a time interval T . In the process he keeps the magnitude B0 of the

magnetic field fixed. Assuming the adiabatic condition is satisfied, what

is the total phase change for the electron wave function after the magnetic

field returns to its original z-direction? (Hint: the total phase includes

both the dynamical phase and Berry’s phase.)
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7. Born approximation (12 points)

Consider a particle of mass m scattering off a delta-shell potential in 3d

V (r) = V0b δ(r − b)

(a) (5 points) What is the scattering amplitude a particle with energy h̄2k2

2m
in

the first order Born approximation?

(b) (3 points) What is the differential cross section in the first order Born

approximation?

(c) (4 points) What is the total cross section in the limit k → 0?
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8. Forced harmonic oscillator (15 points)

Consider an harmonic oscillator perturbed under a time dependent external

potential for t ≥ 0

H =
p2

2m
+

1

2
mω2x2 + V (x)f(t)

The system is in ground state |0〉 at t = 0.

(a) (9 points) Suppose

V (x) = λx, f(t) = e−µt

To lowest order in λ what is the probability that system is in n-th state at

t = ∞? (You should give explicit expressions for all n ≥ 1.)

(b) (6 points) Now take

V (x) = λx8, f(t) = cos Ωt

For what values of Ω that the harmonic oscillator has a nonzero probability

(to lowest order in λ) to jump to an excited state? (You only need to write

down the answer and give a brief explanation for your answer in words.

No intermediate calculation is required.)
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9. Two variational proofs (20 points)

(a) (8 points) Prove that, in time-independent perturbation theory, the sum of

the second order, third order, fourth order plus all higher order corrections

to the ground state energy of a quantum system must be either zero or

negative.

(b) (12 points) Consider a particle of mass m in a one-dimensional potential.

The Hamiltonian is H = p2

2m
+ V (x). The potential has the following

properties:

V (x) < 0 |x| < a (14)

= 0 |x| > a (15)

Use the variational principle to prove that there is at least one bound

state solution. [Hint: Take e.g. the trial wave function to be a Gaussian

N(α)e−
1
2
α2x2

and consider the limit α small, i.e. the width of the Gaussian

becomes large in the limit.]
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10. Boundary conditions for scattering problems (20 points)

In three dimensions, the wave function ψ(~r) of a particle scattering off a poten-

tial V (~r) satisfies the asymptotic boundary condition

ψ(~r) → eikz +
eikr

r
f(θ, φ), r →∞ (16)

The first term in (16) is the incoming plane wave along z-direction and the

second term is the scattered spherical wave. (r, θ, φ) are spherical coordinates

with the scattering center located at r = 0 and θ the angle between ~r and z-axis.

(a) (4 points) If the scattering potential V (~r) is central, i.e. V (~r) = V (r), give

argument that f should only depend on θ. Should f(θ, φ) be independent

of θ as well? Why?

(b) (2 points) Reconsider the question (a) for the limit k → 0.

(c) (4 points) Now let us consider a scattering problem in one dimension

(−∞ < x < +∞) with the incoming plane wave in the +x direction.

What should be the boundary condition we impose on the wave function

(i.e. analogue of (16) for 1d scattering) ?

(d) (10 points) Now let us consider a scattering problem in two dimensions with

the incoming plane wave in x direction. What should be the boundary

condition we impose on the wave function (i.e. analogue of (16) for 2d

scattering)?
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11. The Landau Problem Revisited (16 points)

Consider a particle of mass m and charge q moving in a uniform magnetic field

B directed along the z-axis. We will only consider the motion in x− y plane.

(a) (8 points) Find the energy spectrum of the particle.

(b) (8 points) Let the wave function of the particle initially (at t = 0) have

the form

Ψ(x, y; 0) = ψ(x, y) (17)

Show that the wave function Ψ(x, y; t) at time t, aside from an arbitrary

phase factor, is periodic in t with a period T , where T = 2π
ωL

is the period

of the classical motion of the particle in the magnetic field and ωL is the

classical cyclotron frequency.
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