Quantum Physics 111 (8.06) Spring 2006
Final Exam Solution
May 18, 2006

1. True or False (20 points):

(a

2 points) False

(b) (2 points) True
(c) (2 points) False
(d) (2 points) False
e) (2 points) False

(g) (2 points) False
(h

(i
(j

2. Short answer questions (10 points)

points) True

2
2 points) True
2

) ( )
) ( )
) ( )
) ( )
(e) ( )
(f) (2 points) True
) ( )
) ( )
) ( )
) ( )

points) True

(a) (3 points)

do (i) e
v ()

or

do  number of particles per unit time per unit solid angle in the detector

aQ incoming flux

(b) (2 points) weak potential (or more explicitly, the norm of the first order
wave function should be much smaller than 1).

(¢) (5 points) First solve the Schrodinger equation for the electron with R
fixed. After solving the electron energy spectrum &, (R), then in the adia-
batic limit, the Hamiltonian for the nuclei becomes

2

—QMNV§+VN(R) + &Eu(R) (1)

H =

One then solves the wave functions and spectrum of the nuclei using (1).

3. The Quantum Dipole-Dipole Interaction (10 points)
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(a) (2 points) Note that in natural units e is dimensionless. Since eFL has
dimension of energy, we have

[E] = eV? (2)
Since eF has dimension of force we have
[F] = (eV)? (3)

(b) (3 points) The dipole d has units

[d] =eV™!
which along with (2) leads to
[a] = (eV)™* (4)
(¢) (5 points) From
IF| = k5

and equations (4) and (3) we find that (note that & is dimensionless)
(eV)* = (eV)P(eV)~°

which leads to
p=38

4. A Particle in a Weak Electric Field (22 points)

(a) (5 points) From the Bohr-Sommerfeld quantization condition (for sharp
walls on both sides)

/idm 2m(E + V) = nrh, n=12-- (5)

The integration is trivial and leads to

v 2m(E, + Vp)a = nh (6)

n2m2h?

2ma? ’

and

E,=-Vy+ n=12--- (7)



(b)

T

\

Figure 1: A square well potential in a constant electric field.

(3 points) Boundary states have energy E < 0. Setting £ = 0 in (29) we
find that

The number of boundary states of the system is thus given by

v2mVya

N:
7h

(3 points) Turing on the electric field add an additional term —e&yz to the
potential. A sketch of the potential is in figure 1.

The potential no longer binds states because it is unbounded from below;
a particle trapped in the well can reduce its energy by tunnelling out to
T = 00.

(6 points) Since Vy > R and Vo > e&pa, we can approximate the ground

ma?

state energy simply by —Vj. The classical turning is

Vo

To = (5
6(90

The barrier penetration factor is given semi-classically by

P~e?d



with 5 1
§== / dz 5 () ®)

k(x) = /2m(Vy — e&ox)

Since Vy > e&ya which implies that x5 > a, we can set the lower inte-
gration limit in (8) to 0 at the lowest order approximation. Then we find

where

that
4 \/2mVg
- 3h 650
Thus
4 \/2mV§
P~exp|——= ‘ 9)
3h 650
(e) (5 points) The lifetime 7 of the particle is given by
1
= _
R

where R is the tunnelling rate, i.e. tunnelling probability per unit time. R
can be estimated by

P
R = T (10)
where P is given by (9) and T is the classical period of the particle trapped
in the well. The ground state energy is given by taking n = 1 in (29) and
we find that
m2h?

E =V
! O—i_2ma2

where the second term should be interpreted as the kinetic energy. The
velocity v of a classical particle with this energy is thus given by

2 2ma?
which leads to b
T
= — 11
V= (11)
From (11),
T 2£ B 2ma?
v 7h
Thus the lifetime
2ma? | 4 V2
T = e’ 3h e€



5. Derivation of band gap from perturbation theory (15 points)

A particle of mass m moves in one dimension in the periodic potential
2rx
V(z) = Vpcos ()
a

(a) (2 points) The Bloch theorem says that the wave function of the particle
can be written in a form

U(x) = " up(x)

with ug () a periodic function with period a and k € (=%
lent expression is

Uy
’a

). An equiva-

Y(z +a) = e*y(z)

(b) (4 points) Consider normalized plane waves

The condition

implies that e?** = —1, i.e.

2 1
P L 0 S S
a

Thus
(2n + 1)%72R?

FE,. =
k 2ma?

. n=0,41,42 -

(c) (8 points) The lowest energy states in (b) are given by n = 0 and n = —1,
with

w2h?
Eir = —
@ 2ma

and wave functions

1 .
Yi(z) = —=e*ra?

VL

Thus we need to consider the degenerate perturbation theory. For this
purpose we need to compute H' = (¢|V|¢') with €,¢’ = £,

Vo L 2
H’++:H’77:f0/0 dxcos<m>:0

a

and

Vo (£ e 2 Vi
er— :Hl_+: LO/O dz 65 cos <7;'1:) _ 0
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Thus we find that .
; 0 W
e

We thus find that the lowest energy eigenvalues considered in (b) spit into

2h? 1

E = =5V (12)

"~ 2ma?
(d) (1 point) The split V{ found in (12) is the band gap at k = =7 caused by
the periodic potential.

6. A slow field reversal (20 points)
The Hamiltonian for an electron in a magnetic field can be written as

ez 5 B.  B,+iB, _eh

(a) (3 points) If he reverses the field, there will be a time that the magnetic

field is zero, at which there is a degeneracy between spin up and spin down
states (w.r.t z-direction) and the adiabatic condition breaks down.

(b) (3 points) When there is a permanent magnetic field in the x — y plane,
then the spin up and spin down states are never degenerate. As far as he

reveres the magnetic field slowly enough, the adiabatic condition can be
satisfied.

(¢) (4 points) Using (13) the Hamiltonian can be written as
vt A
H= < A —ut )

v — pBBo
T Y
(d) (5 points) In order for the adiabatic condition to be satisfied, we require

that the energy uncertainty is not big enough to cause transition to the
other level. We thus have

with

A = ppbBy

A>O0F
while 5 5 A
)
0F ~ —~ — ot = —
AN v
which leads to
A2
— 1
. >
which is BT -
HBD7 0
1 T
1Bq > or > ,MBB%



(e) (5 points) For B to rotate the full circle with magnitude By fixed. The
energy of the state which aligns with the rotating magnetic field is also
constant given by ugBy.

The dynamical phase is
1
0 = —upBot
h,uB 0

where ¢ (it is ok if you assume it is 27") is the time used to rotate the
magnetic field. The Berry’s phase is

1
o= =5 = -7

7. Born approximation (12 points)
Consider scattering a particle of mass m off a delta-shell potential in 3d

V(r) = Vobd(r —b) (14)

(a) (5 points) Using the formula for Born approximation in a central potential

2 0o
f(0) = _Tm/ drrV (r)singr
h%q Jo
with
= 2k sin o
- 2
one finds that for potential (14)

ZmVOb2

f() = sin gb

(b) (3 points) The differential cross section is

do 2mVpb?\*
o= 17O = (252 s (19

(c) (4 points) In & — 0 limit, equation (15) becomes

do 2mVyb3 2
- (25) (16)

Thus we find the total cross section

2 3
Otot = /dQ — =dn ( mh‘g)b )



8. Forced harmonic oscillator (15 points)

Consider an harmonic oscillator perturbed under a time dependent external
potential for t > 0
2
1
H:§%+§mﬁﬁ+vmﬁ@

The system is at ground state |0) at ¢ = 0.
(a) (9 points) The transition probability is given by
Pa(t) = |es]”

with
E,— E,

1 —_
%@Zﬁﬁ“%ﬂww, Wha =

Herea=0andb=n >0

H o= M(t)(n|z|0) = K f(t)6,1, K= )\\/Z

Thus
cl(oo):g#_liw =0, n>1
and K? 1 A2 1
Poa(t=00) = — =

2?4+ w? 2mhw p? + w?
(b) (6 points) The system can jump to |n) only if

Vi, = (n|2®0) # 0

and ) = nw. V, is nonzero for n = 2,4,6,8. Thus the values of 2 =
2w, 4w, bw, Sw.

9. Two variational proofs (20 points)
(a) (8 points) Consider a Hamiltonian of the form
H=Hy+ \V

where the ground state wave function and eigenvalue of Hy are given by [1q)
and Ey. Then the ground state energy of H from 1st order perturbation
theory is given by

E = FE,+ E(()l) = By + M|V |[vho) = (Yol H|1bo) (17)



Equation (17) can also be interpreted as a variational computation of the
ground state energy with vy as the trial wave function. Then from the
variational principle

E > Ey (18)

where E,, denotes the exact ground state energy of H. Since
E,=FEy+E" +EP +--
Equation (18) implies that
E <0

Consider the normalized trial wave function

N

) = (i) exp(—§a2x2)
We want to compute

E = (Y|HY)=KE+ PE

where the kinetic energy is

B2 oo |dy)?
KE = o[ aw | 1
2m J- v dx (19)
hla?
= ) 20
e (20)
The potential energy is
PE — \‘/3% _“a dz V (z)e="" (21)
Now let us consider the limit o — 0. Then (21) becomes
PE = \;% ( 9 deV(x) + O(a2)> = aVy + O0(a?) (22)
where we have Taylor expanded e inside the integrand of (21) and
1 a
Vo=— ] dzV(zx) <0

VT J=a
Collecting (20) and (22) we find that as @ — 0

h2 a2

E =~ . +aVy + 0(a?) (23)

Note that in the @ — 0 limit the leading term in (23) is given by the
second term which is negative. Therefore there exists a a small enough
such that the total energy is less than 0. Hence, the ground state has
negative energy, and is a bound state.
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10. Boundary conditions for scattering problems (20 points)

In three dimensions, the wave function ¢ (7") of a particle scattering off a poten-
tial V() should satisfy the boundary condition

ikr

—1(0.9), r—oo (24)

() — & +

The first term in (24) is the incoming plane wave along z-direction and the
second term is the scattered spherical wave. (r,0,¢) are spherical coordinates
with the scattering center located at r = 0 and 6 the angle between 7 and z-axis.

(a) (4 points) If the scattering potential V'(7) is central, i.e. V(¥) = V(r), the
system is rotational invariant in ¢ direction. Thus f(6, ¢) cannot depend
¢. The same thing cannot be said of the 6-dependence, since the incoming
plane wave breaks the rotational symmetry in 6 direction.

(b) (2 points) In the limit & — 0, the incoming wave function e*** — 1 becomes

spherically symmetric. In this limit f(6, ¢) does not depend on either  or
o.

(¢) (4 points) In one dimension we should impose the boundary condition

Y(z) = e 4 Rem T — —00 (25)
Te*, T — +00 (26)

(d) (10 points) The boundary condition in 2d should have the form
, 1
U(w,y) =™+ Ef(e)’ p— 0 (27)

where (p,6) are polar coordinates. This follows from that the scattered
wave should be a spherical wave in 2d. The power a in (27) can be
determined by requiring that the second term in (27) satisfies the free
Schrodinger equation for p — oo. Free Schrodinger equation in 2d

(V2+ k=0

can be written in polar coordinates as (see equation (9) in the formula
sheet)

1 1 1
P gt S0+ k=0

In the limit p — oo, the above equation becomes

P(Vp0) + K /p = 0
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which leads to that

We thus in 2d

ba,y) = 6 + \;ﬁf(ﬁ), p— 0 (25)

Alternatively one can also argue a = % in (27) from the conservation of
probability.

11. The Landau Problem Revisited (16 points)

(a) (8 points) Choose the gauge,

—

A = (0, Bz,0)

and the time-independent Schrodinger equation in this gauge is given by

1 1 q 2
e o 209
2mpz + 2m Py c o
[pyv H] =0
we can write the wave function as

U(w,y) = ™ f(z)

Acting on such a wave function the Hamiltonian becomes

H= 27171]95 + ;mw%(x — )2
with
qB chk,
wp =, To = B
Thus the energy spectrum is given by
E, = (n+;)th, n=0,1,--- (29)

(b) (8 points) Expand v (x,y) in terms of a complete sets of energy eigenstates
() = catda

where }°,, is a short hand notion for summing over n and the integral over
k,. Then at time 7" we find that

\I/(x7 v, t) = Z cae—%Entwa
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with £, given by (29). Now let ¢ = [T with [ an integer and T = Z—z, we
then find that

U(w,y:1T) = (=1)'¢(z,y)
Thus up to an irrelevant overall phase factor (—1)! (which is universal for
all wave functions) W(z,y;t) is periodic in ¢ with a period 7.
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