
Quantum Physics III (8.06) Spring 2006
Final Exam Solution

May 18, 2006

1. True or False (20 points):

(a) (2 points) False

(b) (2 points) True

(c) (2 points) False

(d) (2 points) False

(e) (2 points) False

(f) (2 points) True

(g) (2 points) False

(h) (2 points) True

(i) (2 points) True

(j) (2 points) True

2. Short answer questions (10 points)

(a) (3 points)

dσ

dΩ
=

(
dN

dtdΩ

)
out(

dN
dtDA

)
in

or

dσ

dΩ
=

number of particles per unit time per unit solid angle in the detector

incoming flux

(b) (2 points) weak potential (or more explicitly, the norm of the first order
wave function should be much smaller than 1).

(c) (5 points) First solve the Schrodinger equation for the electron with R
fixed. After solving the electron energy spectrum En(R), then in the adia-
batic limit, the Hamiltonian for the nuclei becomes

H = − h̄2

2MN

∇2
R + VN(R) + En(R) (1)

One then solves the wave functions and spectrum of the nuclei using (1).

3. The Quantum Dipole-Dipole Interaction (10 points)
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(a) (2 points) Note that in natural units e is dimensionless. Since eEL has
dimension of energy, we have

[E] = eV 2 (2)

Since eE has dimension of force we have

[F ] = (eV )2 (3)

(b) (3 points) The dipole d has units

[d] = eV −1

which along with (2) leads to

[α] = (eV )−3 (4)

(c) (5 points) From

|~F | = k
α1α2

Rp

and equations (4) and (3) we find that (note that k is dimensionless)

(eV )2 = (eV )p(eV )−6

which leads to
p = 8

4. A Particle in a Weak Electric Field (22 points)

(a) (5 points) From the Bohr-Sommerfeld quantization condition (for sharp
walls on both sides)

∫ a
2

−a
2

dx
√

2m(E + V0) = nπh̄, n = 1, 2, · · · (5)

The integration is trivial and leads to

√
2m(En + V0)a = nπh̄ (6)

and

En = −V0 +
n2π2h̄2

2ma2
, n = 1, 2, · · · (7)
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Figure 1: A square well potential in a constant electric field.

(b) (3 points) Boundary states have energy E < 0. Setting E = 0 in (29) we
find that

n =

√
2ma2V0

π2h̄2

The number of boundary states of the system is thus given by

N =

√
2mV0a

πh̄

(c) (3 points) Turing on the electric field add an additional term −eE0x to the
potential. A sketch of the potential is in figure 1.

The potential no longer binds states because it is unbounded from below;
a particle trapped in the well can reduce its energy by tunnelling out to
x = ∞.

(d) (6 points) Since V0 À h̄2π2

ma2 and V0 À eE0a, we can approximate the ground
state energy simply by −V0. The classical turning is

x0 =
V0

eE0

The barrier penetration factor is given semi-classically by

P ∼ e−S
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with

S =
2

h̄

∫ x0

a
2

dx κ(x) (8)

where
κ(x) =

√
2m(V0 − eE0x)

Since V0 À eE0a which implies that x0 À a, we can set the lower inte-
gration limit in (8) to 0 at the lowest order approximation. Then we find
that

S ≈ 4

3h̄

√
2mV 3

0

eE0

Thus

P ' exp


− 4

3h̄

√
2mV 3

0

eE0


 (9)

(e) (5 points) The lifetime τ of the particle is given by

τ =
1

R

where R is the tunnelling rate, i.e. tunnelling probability per unit time. R
can be estimated by

R =
P

T
(10)

where P is given by (9) and T is the classical period of the particle trapped
in the well. The ground state energy is given by taking n = 1 in (29) and
we find that

E1 = V0 +
π2h̄2

2ma2

where the second term should be interpreted as the kinetic energy. The
velocity v of a classical particle with this energy is thus given by

1

2
mv2 =

π2h̄2

2ma2

which leads to

v =
πh̄

ma
(11)

From (11),

T =
2a

v
=

2ma2

πh̄

Thus the lifetime

τ =
2ma2

πh̄
e+ 4

3h̄

√
2mV 3

0
eE

4



5. Derivation of band gap from perturbation theory (15 points)

A particle of mass m moves in one dimension in the periodic potential

V (x) = V0 cos
(

2πx

a

)

(a) (2 points) The Bloch theorem says that the wave function of the particle
can be written in a form

ψ(x) = eikxuk(x)

with uk(x) a periodic function with period a and k ∈ (−π
a
, π

a
). An equiva-

lent expression is
ψ(x + a) = eikaψ(x)

(b) (4 points) Consider normalized plane waves

φ(x) =
1√
L

eikx

The condition
φ(x + a) = −φ(x)

implies that eika = −1, i.e.

k =
(2n + 1)π

a
, n = 0,±1,±2, · · ·

Thus

Ek =
(2n + 1)2π2h̄2

2ma2
, n = 0,±1,±2, · · ·

(c) (8 points) The lowest energy states in (b) are given by n = 0 and n = −1,
with

E±π
a

=
π2h̄2

2ma2

and wave functions

ψ±(x) =
1√
L

e±i π
a

x

Thus we need to consider the degenerate perturbation theory. For this
purpose we need to compute H ′ = 〈ε|V |ε′〉 with ε, ε′ = ±,

H ′
++ = H ′

−− =
V0

L

∫ L

0
dx cos

(
2πx

a

)
= 0

and

H ′
+− = H ′

−+ =
V0

L

∫ L

0
dx ei 2πx

a cos
(

2πx

a

)
=

V0

2
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Thus we find that

H ′ =

(
0 1

2
V0

1
2
V0 0

)

We thus find that the lowest energy eigenvalues considered in (b) spit into

E =
π2h̄2

2ma2
± 1

2
V0 (12)

(d) (1 point) The split V0 found in (12) is the band gap at k = ±π
a

caused by
the periodic potential.

6. A slow field reversal (20 points)

The Hamiltonian for an electron in a magnetic field can be written as

H =
e

m
~S · ~B = µB

(
Bz Bx + iBy

Bx − iBy −Bz

)
, µB =

eh̄

2m
(13)

(a) (3 points) If he reverses the field, there will be a time that the magnetic
field is zero, at which there is a degeneracy between spin up and spin down
states (w.r.t z-direction) and the adiabatic condition breaks down.

(b) (3 points) When there is a permanent magnetic field in the x − y plane,
then the spin up and spin down states are never degenerate. As far as he
reveres the magnetic field slowly enough, the adiabatic condition can be
satisfied.

(c) (4 points) Using (13) the Hamiltonian can be written as

H =

(
vt ∆
∆ −vt

)

with

v =
µBB0

T
, ∆ = µBB1

(d) (5 points) In order for the adiabatic condition to be satisfied, we require
that the energy uncertainty is not big enough to cause transition to the
other level. We thus have

∆ À δE

while

δE ∼ h̄

δt
∼ vh̄

∆
, δt =

∆

v
which leads to

∆2

h̄v
À 1

which is
µBB2

1T

h̄B0

À 1 or T À h̄B0

µBB2
1
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(e) (5 points) For B to rotate the full circle with magnitude B0 fixed. The
energy of the state which aligns with the rotating magnetic field is also
constant given by µBB0.

The dynamical phase is

θ =
1

h̄
µBB0t

where t (it is ok if you assume it is 2T ) is the time used to rotate the
magnetic field. The Berry’s phase is

γ+ = −1

2
Ωc = −π

7. Born approximation (12 points)

Consider scattering a particle of mass m off a delta-shell potential in 3d

V (r) = V0b δ(r − b) (14)

(a) (5 points) Using the formula for Born approximation in a central potential

f(θ) = −2m

h̄2q

∫ ∞

0
dr rV (r) sin qr

with

q = 2k sin
θ

2

one finds that for potential (14)

f(θ) = −2mV0b
2

h̄2q
sin qb

(b) (3 points) The differential cross section is

dσ

dΩ
= |f(θ)|2 =

(
2mV0b

2

h̄2q

)2

sin2 qb (15)

(c) (4 points) In k → 0 limit, equation (15) becomes

dσ

dΩ
=

(
2mV0b

3

h̄2

)2

(16)

Thus we find the total cross section

σtot =
∫

dΩ
dσ

dΩ
= 4π

(
2mV0b

3

h̄2

)2
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8. Forced harmonic oscillator (15 points)

Consider an harmonic oscillator perturbed under a time dependent external
potential for t ≥ 0

H =
p2

2m
+

1

2
mω2x2 + V (x)f(t)

The system is at ground state |0〉 at t = 0.

(a) (9 points) The transition probability is given by

Pa→b(t) = |cb|2

with

cb(t) =
1

ih̄

∫ t

0
dt′ H ′

ba(t
′)eiωbat′ , ωba =

Eb − Ea

h̄

Here a = 0 and b = n > 0

H ′
n0 = λf(t)〈n|x|0〉 = Kf(t)δn,1, K = λ

√
h̄

2mω

Thus

c1(∞) =
K

ih̄

1

µ− iω
cn = 0, n > 1

and

P0→1(t = ∞) =
K2

h̄2

1

µ2 + ω2
=

λ2

2mh̄ω

1

µ2 + ω2

(b) (6 points) The system can jump to |n〉 only if

Vn = 〈n|x8|0〉 6= 0

and Ω = nω. Vn is nonzero for n = 2, 4, 6, 8. Thus the values of Ω =
2ω, 4ω, 6ω, 8ω.

9. Two variational proofs (20 points)

(a) (8 points) Consider a Hamiltonian of the form

H = H0 + λV

where the ground state wave function and eigenvalue of H0 are given by |ψ0〉
and E0. Then the ground state energy of H from 1st order perturbation
theory is given by

E = E0 + E
(1)
0 = E0 + λ〈ψ0|V |ψ0〉 = 〈ψ0|H|ψ0〉 (17)
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Equation (17) can also be interpreted as a variational computation of the
ground state energy with ψ0 as the trial wave function. Then from the
variational principle

E ≥ Egs (18)

where Egs denotes the exact ground state energy of H. Since

Egs = E0 + E
(1)
0 + E

(2)
0 + · · ·

Equation (18) implies that

E
(2)
0 + · · · ≤ 0

(b) Consider the normalized trial wave function

ψ =

(
α2

π

) 1
4

exp(−1

2
α2x2)

We want to compute

E = 〈ψ|H|ψ〉 = KE + PE

where the kinetic energy is

KE =
h̄2

2m

∫ ∞

−∞
dx

∣∣∣∣∣
dψ

dx

∣∣∣∣∣
2

(19)

=
h̄2α2

4m
. (20)

The potential energy is

PE =
α√
π

∫ a

−a
dx V (x)e−α2x2

(21)

Now let us consider the limit α → 0. Then (21) becomes

PE =
α√
π

(∫ a

−a
dx V (x) + O(α2)

)
= αV0 + O(α3) (22)

where we have Taylor expanded e−αx2
inside the integrand of (21) and

V0 =
1√
π

∫ a

−a
dx V (x) < 0

Collecting (20) and (22) we find that as α → 0

E ≈ h̄2α2

4m
+ αV0 + O(α3) (23)

Note that in the α → 0 limit the leading term in (23) is given by the
second term which is negative. Therefore there exists a α small enough
such that the total energy is less than 0. Hence, the ground state has
negative energy, and is a bound state.
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10. Boundary conditions for scattering problems (20 points)

In three dimensions, the wave function ψ(~r) of a particle scattering off a poten-
tial V (~r) should satisfy the boundary condition

ψ(~r) → eikz +
eikr

r
f(θ, φ), r →∞ (24)

The first term in (24) is the incoming plane wave along z-direction and the
second term is the scattered spherical wave. (r, θ, φ) are spherical coordinates
with the scattering center located at r = 0 and θ the angle between ~r and z-axis.

(a) (4 points) If the scattering potential V (~r) is central, i.e. V (~r) = V (r), the
system is rotational invariant in φ direction. Thus f(θ, φ) cannot depend
φ. The same thing cannot be said of the θ-dependence, since the incoming
plane wave breaks the rotational symmetry in θ direction.

(b) (2 points) In the limit k → 0, the incoming wave function eikz → 1 becomes
spherically symmetric. In this limit f(θ, φ) does not depend on either θ or
φ.

(c) (4 points) In one dimension we should impose the boundary condition

ψ(x) = eikx + Re−ikx, x → −∞ (25)

= Teikx, x → +∞ (26)

(d) (10 points) The boundary condition in 2d should have the form

ψ(x, y) = eikx +
1

ρa
f(θ), ρ →∞ (27)

where (ρ, θ) are polar coordinates. This follows from that the scattered
wave should be a spherical wave in 2d. The power a in (27) can be
determined by requiring that the second term in (27) satisfies the free
Schrodinger equation for ρ →∞. Free Schrodinger equation in 2d

(∇2 + k2)ψ = 0

can be written in polar coordinates as (see equation (9) in the formula
sheet)

1√
ρ
∂2

ρ(
√

ρψ) +
1

4ρ2
ψ +

1

ρ2
∂2

φψ + k2ψ = 0

In the limit ρ →∞, the above equation becomes

∂2
ρ(
√

ρψ) + k2√ρψ = 0
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which leads to that

ψ(ρ) =
1√
ρ
f(θ)

We thus in 2d

ψ(x, y) = eikx +
1√
ρ
f(θ), ρ →∞ (28)

Alternatively one can also argue a = 1
2

in (27) from the conservation of
probability.

11. The Landau Problem Revisited (16 points)

(a) (8 points) Choose the gauge,

~A = (0, Bx, 0)

and the time-independent Schrodinger equation in this gauge is given by

H =
1

2m
p2

x +
1

2m

(
py − q

c
Bx

)2

[py, H] = 0

we can write the wave function as

ψ(x, y) = eikyyf(x)

Acting on such a wave function the Hamiltonian becomes

H =
1

2m
p2

x +
1

2
mω2

L(x− x0)
2

with

ωL =
qB

mc
, x0 =

ch̄kx

qB

Thus the energy spectrum is given by

En = (n +
1

2
)h̄ωL, n = 0, 1, · · · (29)

(b) (8 points) Expand ψ(x, y) in terms of a complete sets of energy eigenstates

ψ(x, y) =
∑
α

cαψα

where
∑

α is a short hand notion for summing over n and the integral over
ky. Then at time T we find that

Ψ(x, y, t) =
∑
α

cαe−
i
h̄

Entψα
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with En given by (29). Now let t = lT with l an integer and T = 2π
ωL

, we
then find that

Ψ(x, y; lT ) = (−1)lψ(x, y)

Thus up to an irrelevant overall phase factor (−1)l (which is universal for
all wave functions) Ψ(x, y; t) is periodic in t with a period T .
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