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1. Short Answer (16 points)

(a) (1 point) B.

(b) (2 points) (i) False (ii) True

(c) (3 points) e2

h
. One can deduce it by dimensional analysis as follows. The Hall

conductivity σH has the dimension of velocity. On dimensional ground it must
have the form

σH ∼ αnc, α =
e2

h̄c

for some number n, since α is the only dimensionless constant one can form
out of fundamental constant h̄, c, e. Since σH arises in non-relativistic quantum
mechanics, it should not depend on c, leading to n = 1.

(d) Turning on a weak periodic potential introduces band gaps in the single-particle
energy spectrum (3 points). If the number density n is such that all energy bands
are completely full or empty, the material is an insulator (2 points).

(e) One could use a double slit experiment with a solenoid hidden behind the screen
to measure the Aharonov-Bohm effect (2 points). In classical mechanics electro-
magnetic potentials are convenient mathematical devises to compute the fields
(1 point). In quantum mechanics they have independent physical meaning as
demonstrated by the Aharonov-Bohm effect (2 points).

2. Dimensional Analysis of a Degenerate Fermi Gas (10 points)

(a) (5 points) For a non-relativistic Fermi gas, the energy of a single particle is pro-
portional to 1/m, so is the energy density ε. Thus K ∝ 1

m
(1 point). In natural

units, with h̄ = c = 1, K then has dimension 1/eV . Also note that the volume
has dimension (eV )−3 in natural units. Thus the energy density ε has dimension
(eV )4 and the number density n has dimension (eV )3 and equation ε = Knγ

becomes

(eV )4 =
1

eV
(eV )3γ

We find that γ = 5
3
.

(b) (5 points) For an ultra-relativistic Fermi gas, the energy of a single particle is
independent of m, so are ε and K (1 point). K is thus dimensionless in natural
units. Since energy density ε has unit eV 4 and number density n has dimension
eV 3, we find that γ = 4

3
.

3. Fermi surface (10 points)
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(a) (3 points) To find the ground state energy, we fill electrons to the lowest available
single-particle levels allowed by the Pauli exclusion principle. Since an electron
has two spin states, we find that

E0 = 2
3∑

n=0

(n +
1

2
)h̄ω = 16h̄ω

(b) (3 points) For the first excited state, we excite one electron at level n = 3 to level
n = 4, so we have

E1 = E0 + h̄ω = 17h̄ω

(c) For 8 bosons, we simply fill the lowest single particle state for ground state (2
points)

E0 = 8× 1

2
h̄ω = 4h̄ω

and the first excited state has energy (2 points)

E1 = E0 + h̄ω = 5h̄ω

4. Perturbations of a Two-Dimensional Harmonic Oscillator (26 points)

(a) The ground state of H0 is |00〉. We have

H ′|00〉 = ∆|1, 1〉 (1)

Thus the first order correction is (2 points)

E
(1)
00 = 〈0, 0|H ′|0, 0〉 = 0

and the second order correction is (4 points)

E
(2)
00 =

∑

n,m6=0

|〈0, 0|H ′|n,m〉|2
E

(0)
00 − E

(0)
nm

=
|〈0, 0|H ′|1, 1〉|2

E
(0)
00 − E

(0)
11

= − ∆2

2h̄ω

where only n = m = 1 term contributes in the sum due to (1).

(b) The unperturbed states of energy 2h̄ω are |0, 1〉 and |1, 0〉 which are two-fold
degenerate (2 points). One finds that

〈0, 1|H ′|0, 1〉 = 〈1, 0|H ′|1, 0〉 = 0

and
〈0, 1|H ′|1, 0〉 = 〈1, 0|H ′|0, 1〉 = ∆

Thus in this degenerate subspace we have (4 points)

H ′ =

(
0 ∆
∆ 0

)

with eigenvalues (2 points)

E
(1)
± = ±∆
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(c) The eigenvector for E
(1)
+ = ∆ is (2 points)

ψ
(0)
+ =

1√
2

(|0, 1〉+ |1, 0〉)

and the eigenvector for E
(1)
− = −∆ is (2 points)

ψ
(0)
+ =

1√
2

(|0, 1〉 − |1, 0〉)

(d) Note that
〈1, 2|H ′|0, 1〉 =

√
2∆, 〈2, 1|H ′|1, 0〉 =

√
2∆

which leads to
〈1, 2|H ′|ψ+〉 = ∆, 〈2, 1|H ′|ψ+〉 = ∆

These are the only nonzero matrix elements outside the degenerate subspace to
which ψ+ belongs. Thus one finds that the second order correction to the energy
of ψ+ is

E
(2)
+ =

|〈1, 2|H ′|ψ+〉|2
E

(0)
01 − E

(0)
12

+
|〈2, 1|H ′|ψ+〉|2

E
(0)
01 − E

(0)
21

= −∆2

h̄ω

The second order energy correction to ψ+ is exactly the same, i.e.

E
(2)
− = −∆2

h̄ω

(e) We expect the perturbative expansion to be good if

∆ ¿ h̄ω

5. Particle in a magnetic field and harmonic oscillator potential (15 points)

(a) Since V (x) = 1
2
mω2

0x
2 depends explicitly on x, we will choose a gauge which

depends on x only,
~A = (0, Bx, 0)

and the time-independent Schrodinger equation in this gauge is given by

H =
1

2m
p2

x +
1

2m

(
py − q

c
Bx

)2

+
1

2
mω2

0x
2

(b) In the absence of the potential V (x), the Hamiltonian is

H =
1

2m
p2

x +
1

2m

(
py − q

c
Bx

)2

Since
[py, H] = 0
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we can write the wave function as

ψ(x, y) = eikyyf(x)

Acting on such a wave function the Hamiltonian becomes

H =
1

2m
p2

x +
1

2
mω2

L(x− x0)
2

with

ωL =
qB

mc
, x0 =

ch̄ky

qB

Thus the energy spectrum is given by

En = (n +
1

2
)h̄ωL, n = 0, 1, · · ·

(c) In the presence of the potential V (x), we still have

[py, H] = 0

The wave function can then be written as

ψ(x, y) = eikyyf(x)

Acting on such a wave function the Hamiltonian becomes

H =
1

2m
p2

x +
1

2
mω2

L(x− x0)
2 +

1

2
mω2

0x
2

with

ωL =
qB

mc
, x0 =

ch̄kx

qB

One can further write H as (using ω0 = ωL)

H =
1

2m
p2

x +
1

2
(2mω2

L)(x− x0/2)2 +
mω2

L

4
x2

0

This is a harmonic oscillator of frequency
√

2ωL with a constant energy shift.
Thus we find

En(ky) = (n +
1

2
)
√

2h̄ωL +
mω2

L

4
x2

0 = (n +
1

2
)
√

2h̄ωL +
h̄2k2

x

4m
, n = 0, 1, · · ·
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