A fast quantum mechanical algorithm for database search

Lov K. Grover
3C-404A, Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
lkgrover@bell-labs.com

Summary This paper'ap_plies quantum computing to a
Imagine a phone directory containig names mundane problem in information processing and pre-

arranged in completely random order. In order to ﬁndsents_ an a'gof"hm that is significantly f:?\ster' than any
classical algorithm can be. The problem is this: there is

someone's phone number with a probabilityzof , aman unsorted database containgtems out of which
. . o . just one item satisfies a given condition - that one item
classical algorithm (whether deterministic or probabilis-j, o5 to be retrieved. Once an item is examined, it is pos-
n-Sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
tum mechanical systems can be in a superposition ahe database that would aid its selection. The most effi-
states and simultaneously examine multiple names. Bgient classical algorithm for this is to examine the items
properly adjusting the phases of various operations, suia the database one by one. If an item satisfies the
cessful computations reinforce each other while othergequired condition stop; if it does not, keep track of this
interfere randomly. As a result, the desired phone numitem so that it is not examined again. It is easily seen

tic) will need to look at a minimum c% names. Qua

ber can be obtained in on@(/N)  steps. The algoinat this al
rithm is within a small constant factor of the fastest o o
possible quantum mechanical algorithm. items before finding the desired item.

gorithm will need to look at an average'%lof

1. Introduction 1.1 Search Problems in Computer Science

1.0 Background Quantum mechanical computers Even in theoretical computer science, t_he typical prob-
lem can be looked at as that of examining a nhumber of

were proposed in the early 1980's [Benioff80] and ingjtterent possibilities to see which, if any, of them sat-

many respects, shown to be at least as powerful as clagsy a given condition. This is analogous to the search
sical computers - an important but not surprising resultproblem stated in the summary above, except that usu-
since classical computers, at the deepest level, ultally there exists some structure to the problem, i.e some
mately follow the laws of quantum mechanics. Thesorting does exist on the database. Most interesting
description of quantum mechanical computers was forproblems are concerned with the effect of this structure
malized in the late 80's and early 90’s [Deutsch85]on the speed of the algorithm. For example the SAT
[BB94] [BV93] [Ya093] and they were shown to be Problem asks whether it is possible to find any combina-
more powerful than classical computers on various spdion of n binary variables that satisfies a certain set of
cialized problems. In early 1994, [Shor94] demonstrate(‘fIauses C, the crucial issue in NP-completeness is

that a quantum mechanical computer could efficientlyWhemer it is possible to solve it in time polynomiahin

. n . L .
solve a well-known problem for which there was noln this case there ak=2" possible combinations which

known efficient algorithm using classical computers.have to be searched for any that satisfy the specq‘led
o . ... . . property and the question is whether we can do that in a
This is the problem of integer factorization, i.e. finding

the factors of a given integ¥; in a time which is poly-  tme WhiCh is polyhomial inO(logN) , i.eO(n¥)
nomial inlogN . Thus if it were possible to reduce the number of steps to
a finite power of O(logN) (instead o®(./N) as in
this paper), it would yield a polynomial time algorithm

. . - for NP-complete problems.
This is an updated version of a paper that originally In view of the fundamental nature of the search

appeared in Proceedings, STOC 1996, Philadelphia P, . . . .
USA, pages 212-219. 6Yoblem in both theoretical and applied computer sci



ence, it is natural to ask - how fast can the basic identifithat are needed in the algorithm of this paper. The first is
cation problem be solved without assuming anythinghe creation of a configuration in which the amplitude of

about the structure Of the problem? It iS genera”}{he System being in any Of tﬁg basic states Of the Sys_
assumed that this limit i©(N)  since there Wrigems  tem is equal; the second is the Walsh-Hadamard trans-
to be examined and a classical algorithm will clearlyformation operation and the third the selective rotation

take O(N) steps. However, quantum mechanical sysof different states.

tems can simultaneously be in multiple Schrodinger cat A basic operation in quantum computing is that

states and carry out multiple tasks at the same time. Thi @ “fair coin flip” performed on a single bit whose
i states are 0 and 1 [Simon94]. This operation is repre-
paper presents aB(,/N)  step algorithm for the search

1

problem. , . sented by the following matrit = — |1 1| . A bit
There is a matching lower bound on how fast J211 -1

the.deswed 'tem_ can be |d§ntlf|§d. [BBBV,%] show inip, the state 0 is transformed into a superposition in the

their paper that in order to identify the desired element,

without any information about the structure of the datatwo states:

Ei, -1—% . Similarly a bit in the state 1 is
base, a quantum mechanical system will need at least N2 2

Q(J/N) steps. Since the number of steps required byransformed into i.e. the magnitude of the

0l _10
/5 a
2 J2
the algorithm of this paper B(./N) , it is within a con- 2 L2
stant factor of the fastest possible quantum mechanicamplitude in each state isl— but tphaseof the

algorithm. N2
amplitude in the state 1 is inverted. The phase does not

1.2 Quantum Mechanical Algorithmsa good have an analog in classical probabilistic algorithms. It
starting point to think of quantum mechanical algo—Comes about in guantum mechanics since the ampli-

rithms is probabilistic algorithms [BV93] (e.g. simu- tudes are in general complex. In a system in which the

lated annealing). In these algorithms, instead of havingtates are described bybits (it has2" possible states)
the system in a specified state, it is in a distribution ovewe can perform the transformatidh on each bit inde-
various states with a certain probability of being in eactPendently in sequence thus changing the state of the sys-
state. At each step, there is a certain probability of makem. The state transition matrix representing this
ing a transition from one state to another. The evolutiomperation will be of dimensio" X 2", In case the ini-
of the system is obtained by premultiplying this proba-tial configuration was the configuration with albits in
bility vector (that describes the distribution of probabili- the first state, the resultant configuration will have an
ties over various states) by a state transition matrix. n
Knowing the initial distribution and the state transition
matrix, it is possible in principle to calculate the distri-
bution at any instant in time. ) N
Just like classical probabilistic algorithms, tude in all2” states. ,
quantum mechanical algorithms work with a probability Next consider the case when the starting state
distribution over various states. However, unlike classiis another one of th2" states, i.e. a state described by
cal systems, the probability vector does not completelgn n bit binary string with some 0s and some 1s. The
describe the system. In order to completely describe thigsult of performing the transformatidvi on each bit
system we need thamplitudein each state which is a Will be a superposition of states described by all possi-
complex number. The evolution of the system isble n bit binary strings with amplitude of each state hav-
obtained by premultiplying this amplitude vector (that n

describes the distribution of amplitudes over variougng a magnitude equal @ 2 and sign either + or -. To
states) by a transition matrix, the entries of which argyaqce the sign, observe that from the definition of the
complex in general. The probabilities in any state are

given by the square of the absolute values of the ampliﬁatrix M. ie M = 111 the phase of the result-
tude in that state. It can be shown that in order to con- T J211 -1

serve probabilities, the state transition matrix has to bfﬁg configuration is changed when a bit that was previ-
unitary [BV93].

. . ously a 1 remains a 1 after the transformation is
The machinery of quantum mechanical algo-

rithms is illustrated by discussing the three operationgerformed' Hence & be thebit binary string describ-
ing the starting state ang thebit binary string

identical amplitude o 2 in each of ti28 states. This
is a way of creating a distribution with the same ampli-



describing the resulting string, the sign of the amplitude3 A|gorithm

of y is determined by the parity of the bitwise dot prod-(i) Initialize the system to the distribution:

uct of x andy , i.e.(—l)xw . This transformation is Lt 1 1

.
referred to as the Walsh-Hadamard transformationD“/N JN' N “/ND
[DJ92]. This operation (or a closely related operatiorfO be in each of th&l states. This distribution can be
called the Fourier Transformation) is one of the thingobtained inO(logN) steps, as discussed in section 1.2.
that makes quantum mechanical algorithms more powf

i

i.e. there is the same amplitude

i) Repeat the following unitary operatior@(4/N

erful than classical algorithms and forms the basis fo .) P . g y p . (/N)

most significant quantum mechanical algorithms mes (the precise number of repetitions is important as
' discussed in [BBHT96]):

The third transformation that we will need is (a) Let the system be in any state S:
the selective rotation of the phase of the amplitude in y y '
In caseC(S) = 1 , rotate the

certain states. The transformation describing this for a 4
- - phase byt radians;

o 0 o In caseC(S) = 0 , leave the
io, system unaltered.
state system is of the form0 © 0 0 , Where (b) Apply the diffusion transforr® which
o 0% o is defined by the matri® as follows:
0 0 0 &Y Dij:§ifi¢j&D”:—l+§.

This diffusion transformD, can be
implemented a = WRW , whefthe
rotation matrix &W the Walsh-Hadamard
Transform Matrix are defined as follows:

j = /-1 and @1, @y, @3, @, are arbitrary real numbers.

Note that, unlike the Walsh-Hadamard transformation
and other state transition matrices, the probability in
each state stays the same since the square of the absolute

value of the amplitude in each state stays the same. Rij =0ifizj;

R =1ifi=0R; =-1ifiz0.
2. The Abstracted ProblemLet a system As discussed in section 1.2:
haveN = 2" states which are labell&d],S,,...S,. These W = 2-n/2(~1)i 0 wherei is the
2" states are representedrabit strings. Let there be a binary representation of , and

unique state, sa§,, that satisfies the conditid(§,) =

1, whereas for all other stat& C(S) = O(assume that

for any stateS the conditionC(S) can be evaluated in

unit ime). The problem is to identify the st&ge (i) Sample the resulting state. In cagkSy)) = 1
there is a unique stat®, such that the final state &

i O denotes the bitwise dot product

of the twon bit stringsi and .

with a probability of at Ieas%

Note that step (ii) (a) is a phase rotation transformation
of the type discussed in the last paragraph of section 1.2.
In a practical implementation this would involve one
portion of the quantum system sensing the state and then
deciding whether or not to rotate the phase. It would do
it in a way so that no trace of the state of the system be
left after this operation (so as to ensure that paths lead-
ing to the same final state were indistinguishable and
could interfere). The implementation doest involve a
classical measurement.



4. Outline of rest of paper are easily verified: first, thel??2 = P & second, tiat

The loop in step (ii) above, is the heart of the algonthmac,[ing on any vector  gives a vector each of whose

Each iteration of this loop increases the amplitude in the ;
c¢omponents is equal to the average of all components.

i 0lg :
desired state prJND , as a result@(./N) repeti- Using the fact thaP? = P , it follows immediately

tions of the loop, the amplitude and hence the probabifrom the representatio® = —1 + 2P thad?® = |
ity in the desired state rea(1) . In order to see thagnd hencé® is unitary.

the amplitude increases t@%ig in each repetition, In qrder toseethdd s theversion about aver—
N age consider what happens whBn  acts on an arbitrary
we first show that the diffusion transfori, can be vectorv . Expressin@ as—| + 2P , it follows that:
interpreted as amversion about averageperation. A
simple inversion is a phase rotation operation and by th

discussion in the last paragraph of section 1.2, is unitarfi00Ve, €ach component of the vedtar ~ AighereA is
In the following discussion we show that tinersion  the average of all components of the vegtor . Therefore

about averageperation (defined more precisely below) ihe jth component of the vectoDv  is given by

is also a unitary operation and is equivalent to the diffu- . .
sion transfornD as used in step (ii)(a) of the algorithm. (Vi +2A) which can be written agA+ (A=)

Let o denote the average amplitude over all stateswhich is precisely théwversion about average

i.e. if a; be the amplitude in thd state, then the aver- Next consider what happens when theersion
about averageoperation is applied to a vector where

each of the components, except one, are equal to a

é)\'/ = (-1+2P)v = —v+2Pv. By the discussion

N
age is1 Z a; As a result of the operatién the 1
Ni ] value, sayC, which is approximatelyj_ﬁ ; the one com-

amplitude in each state increases (decreases) so that t that is diff ti tive. Th .

after this operation it is as much below (abowegs it ponen. at 1s ditrerent 1S .nega ve. The averages

was above (below) before the operation. approximately equal t&€. Since each of th¢N —1)
components is approximately equal to the average, it
does not change significantly as a result of the inversion
about average. The one component that was negative to

_ _‘ _ _‘ ______ B Average §) start out, now becomes positive and its magnitude
- A B D > increases by approximate®dC , which is approximately
2

before —.
( ) N
- - — — - — _ Average
_______ ___l_AverageQ) <| T_I | —| | T | >
2 F C D>
(before)
(after)

Figure l.Inversion about averageperation.

The diffusion transformD , is defined as follows:

(4.0 Dijzﬁ,ifiij&D”:—1+%. _|_T_|_|_ _|_|_T_|_ Average
Next it is proved thaD is indeed thieversion about - L
averageas shown in figure 1 above. Observe fhatan (after)

be represented in the form=—1 + 2P  whdre s the

Figure 2. Theinversion about averag®peration is

identity matrix andP is a projection matrix with applied to a distribution in which all but one of the com-

Pij = % for all i, j . The following two properties &t



0lo. . theorems 2 & 3 that it converges to the desired state.
DﬁD ; one of the components is As mentioned before (4.0), the diffusion trans-
form D is defined by the matri® as follows:

(5.0) D = %,ifiij &D, = —1+ﬁ.

ponents is initiallyO
initially negative.

In the loop of step (ii) of section 3, first the amplitude in
a selected state is inverted (this is a phase rotation and

hence a valid quantum mechanical operation as disFhe wayD is presented above, it is not a local transition
cussed in the last paragraph of section 1.2). Then thmatrix since there are transitions from each state t¢ all
inversion about averageperation is carried out. This states. Using the Walsh-Hadamard transformation
increases the amplitude in the selected state in each itanatrix as defined in section 3, it can be implemented as

ion by O 10 his is f I din th a product of three unitary transformations as
ation by D:/"ﬁD (this is formally proved in the next D = WRW, each of¥ & Ris a local transition matrig
section as theorem 3). as defined in theorem 2 is a phase rotation matrix and is

clearly local. W when implemented as in section 1.2 is a

Theorem 3- Let the state vector before step (ii)(a) of /0c@l fransition matrix on each bit.

the algorithm be as follows - for the one state that satis-
fies C(S) = 1, the amplitude i% for each of the 1heorem 1- D can be expressed & = WRW

whereW, the Walsh-Hadamard Transform Matrix &Rd
1 the rotation matrix, are defined as follows

<k<—=H and1>0. The change ik (Ak) after R; =0ifi#]j,
EJ ﬁD 1)

=1ifi=0,R; =-1if i#0,

remaining (N —1) states the amplitudelisuch that

steps (a) and (b) of the algorithm is lower bounded byRii

Ak > —2  Also after steps (a) and (B)>0 . W = 22(-1)i0 .

2JN -
N Proof - We evaluat&VRWand show that it is equal to
Using theorem 3, it immediately follows that there D. As discussed in section v = 2—”’2(—1)i[i

exists a numbevl less than/2N , such that M repeti- where i is the binary representation of , and

tions of the loop in step (iik will eXC@edTZ . Since the  denotes the bitwise dot product of the two n bit strings
probability of the system being found in any particular@nd j . R can be written asR = R +R,  where
state is proportional to the square of the amplitude, iR = | | is the identity matrix andR, oo = 2,

follows that the probability of the system being in the

_ 1,1 _ Rz,ij =0 if i #£0, ] #0. By observing thatMM = |
desired state thmsTZ Isk® = 3 . Therefore if the | oM is the matrix defined in section 1.2, it is easily

system is now sampled, it will be in the desired stat@roved thatWww=Il and henc®d, = WRW = —I. We

with a probability greater tha%l next evaluatd®, = WRW. By standard matrix multipli-

Section 6 quotes the argument from [BBBV96] cation: D2 ad = ZWabRZ.chcd' Using the defini-
that it is not possible to identify the desired record in ¢

less thanQ(,/N)  steps. tion of R, and the faclN = 2" | it follows that

- - 2 1yam+0m =
Djaq = 2WaoWoq = o5(-1)? *O0M = £ Thus

pzd | N

5. Proofs

The following section proves that the system discussed . 2
: ! - " : ; all elements of the matri®, equal= , the sum of the
in section 3 is indeed a valid quantum mechanical sys- N

tem and that it converges to the desired state with fivo matrice<D; andD, givesD.
probability Q(1) . It was proved in the previous section

thatD is unitary, theorem 1 proves that it can be imple-

mented as a sequence of three local quantum mechani-

cal state transition matrices. Next it is proved in



Theorem 2 - Let the state vector be as follows - for Corollary 2.2 - Let the state vector be as follows -

any one state the amplitudekis for each of the remain- for the state that satisfigd(S) = 1
ing (N-1) states the amplitude lig. Then after applying

, the amplitude is

for each of the remainingN —1)  states the amplitude

the diffusion tranSfornD, the amplitude in the one state is|. Then if after app|y|ng the diffusion transformation

is k, = %\%_1%(14'2('\] —1)|l and the amplitude in D the new amplitudes are respectivédy

N
the  remaining (N-1)
(N_2)|
N 1

each of states is

_2

Proof -Using the definition of the diffusion transform

(5.0) (at the beginning of this section), it follows that

_ (N-1)
k2 = ENE—].%(]_*'ZT':L
2 2(N-2
lp = %\%_]Hl"'ﬁkl'k%ll
Therefore:
_ 2 (N-2)
'2‘Nk1+ N I,

As is well known, in a unitary transformation the total

dnd as
derived in theorem 2, then

K+ (N=1)12 = K+ (N-1)I°.

Proof - Using theorem 2 it follows that

2_ (N=2)2,, ,(N-1)2;
K = Sk A=

A4(N-2)(N-1)
ki
N2
Similarly
AN-1)2,,
N2

+ —(NN_zz)Z(N _py24+ HN=2(N-1) _il)Z(N =N

(N-1)I2 =

probability is conserved - this is proved for the particu-adding the previous two equations the corollary fol-
lar case of the diffusion transformation by using theoqgws.

rem 2.

Theorem 3- Let the state vector before step (a) of the

Corollary 2.1 - Let the state vector be as follows - gigorithm be as follows - for the one state that satisfies

for any one state the amplitude ks for each of the
remaining (N —1) states the amplitudd.id.etk andl

C(9 = 1, the amplitude i, for each of the remain-
ing (N-1) states the amplitude i$ such that

be real numbers (in general the amplitudes can be com-

<JN .

Then after applying the diffusion transform béghand
[, are positive numbers.

Proof - From theorem 2,

plex). Letk be negative aricbe positive an(%

ky = %\%—1%+2MI . AssumingN > 2 , it fol-

N
lows thatENg - 15 is negative; by assumptiors nega-

(N-1)

tive and 2 | is positive and henc&; >0

Similarly it follows that since by theorem 2,

I, = §k+ wl , and so if the condition

<JN

‘k
I

<¥ is satisfied, thenl; >0 . I‘II_‘

then for N=9 the conditior“_‘ < _(N2—2)

andl;>0.

is satisfied

(h<k<—U and1>0 . The change ik (Ak) after

J2

steps (a) and (b) of the algorithm is lower bounded by
Ak > . . Also after steps (a) and (b)> 0

2JN
Proof - Denote the initial amplitudes By andl, the
amplitudes after the phase inversion (step (a};mnd
I, and after the diffusion transform (step (b)) kyand
I,. Using theorem 2, it follows that:

%L—% +2%1—$H . Therefore

_ _ 2k, 1
(5.1) Ak_kZ_k__N'+2Dl_N

ky =

1n

ﬁD

[ > J_;_lﬂ_ and since by the assumption in this theodem,

Since %) <k< , it follows from corollary 2.2 that

. " . 1
is positive, it follows that > —— . Therefore by (5.1),
~2N



. - . 1 Fourier transform”.
assuming non-triviaN , it follows thatk > PN (iii) The conditional phase shift would be much eas-
ier to implement if the algorithm was used in the mode
In order to provel,>0 , observe that after the phasg here the function at each point was computed rather
inversion (step (), <0 &, >0 . Furthermore it fol- than retrieve_d form memory. This would eliminate the
storage requirements in quantum memory.
lows from the faCtsE)< Kk < ig &l > 1 (dis- (iv) In case the elements had to be retrieved from a
J2 table (instead of being computed as discussed in (iii)), in
) ] Kk principle it should be possible to store the data in classi-
cussed in the previous paragraph) t*’f& <JN cal memory and only the sampling system need be
1 quantum mechanical. This is because only the system
Therefore by corollary 2.1;is positive. under consideration needs to undergo quantum mechan-
ical interference, not the bits in the memory. What is

6. How fast is it possible to find the needed, is a mechanism for the system to be aliéelto

desired el t? _ ) the values at the various datapoints something like what
esired element<There is a matching lower p,50eng rinteraction-free measuremends discussed

bound from the paper [BBBV96] that suggests that it iSn more detail in the first paragraph of the following sec-
not possible to identify the desired element in fewer thamion. Note that, in any variation, the algorithm must be
Q(JN) steps. This result states that any quantun‘?rranged S0 as not to leave any trace of the path fol-

mechanical alaorithm running fdF steps is onlv sensi lowed in the classical system or else the system would
9 9 P y not undergo quantum mechanical interference.

5

tive to O(T2) queries (i.e. if there are more possible

queries, then the answer to at least one can be flipp. Other observations
without affecting the behavior of the algorithm). So in1. |t is possible for quantum mechanical systems to
order to correctly decide the answer which is sensitive tghakeinteraction-free measurementty using the dual-
N queries will take a running time af = Q(J/N) . To ity properties of photons [EV93] [KWZQG]. In these the
, presence (or absence) of an object can be deduced by
see this assume th&l(S) = 0 for all states and theing for a very small probability of a photon inter-
algorithm returns the right result, i.e. that no state satisacting with the object. Therefore most probably the pho-
fies the desired condition. Then, by [BBBV96] if ton will not interact, however, just allowing a small
@robability of interaction is enough to make the mea-
) . ) surement. This suggests that in the search problem also,
aboutC(S) for some can be flipped without affecting ¢ might be possible to find the object without examining
the result, thus giving an incorrect result for the case iyl the objects but just by allowing a certain probability
which the answer to the query was flipped. of examining the desired object which is something like
[BBHT96] gives a direct proof of this result along what happens in the algorithm in this paper.
with tight bounds showing the algorithm of this paper is
within a few percent of the fastest possible quantun2. As mentioned in the introduction, the search algo-
mechanical algorithm. rithm of this paper does not use any knowledge about
the problem. There exist fast quantum mechanical algo-
. . . ) rithms that make use of the structure of the problem at
7. Implementatlon considerationsthis hand, e.g. Shor’s factorization algorithm [Shor94]. It
algorithm is likely to be simpler to implement as com-might be possible to combine the search scheme of this
pared to other quantum mechanical algorithms for th@aper with [Shor94] and other guantum mechanical
following reasons: algorithms to design faster algorithms. Alternatively, it
(i) The only operations required are, first, themight be possible to combine it with efficient database
Walsh-Hadamard transform, and second, the condition&iearch algorithms that make use of specific properties of
phase shift operation both of which are relatively easy athe database. [DH96] is an example of such a recent
compared to operations required for other quantun@pplication. [Median96] applies phase shifting tech-
mechanical algorithms [BCDP96]. niques, similar to this paper, to develop a fast algorithm
(i) Quantum mechanical algorithms based on théfor the median estimation problem.
Walsh-Hadamard transform are likely to be much sim-
pler to implement than those based on the “large scale

T <Q(J/N), the answer to at least one of the querie



3. The algorithm as discussed here assumes a uniq(BV93]
state that satisfies the desired condition. It can be easily
modified to take care of the case when there are multiple

states satisfying the conditio©(S) =1 and
required to find one of these. Two ways of achieving thigPeutsch85]

are:

it is

(i) The first possibility would be to repeat the experi-
ment so that it checks for a range of degeneracy, i.e.
redesign the experiment so that it checks for the degen-

eracy of

the solution

being in the range [PH96]

(k, k+1,...2k) for variousk. Then within logN repe-
titions of this procedure, one can ascertain whether O[lb 392]
not there exists at least one out of khstates that satis-
fies the condition. [BBHT96] discusses this in detail.
(ii) The other possibility is to slightly perturb the prob-

lem in a random fashion as discussed in [MVV87] s
that with a high probability the degeneracy is removed-

9EV93]

There is also a scheme discussed in [VV86] by which it
is possible to modify any algorithm that solves an NP-

search problem with a unique solution and use it t
solve an NP-search problem in general.

0. ACknOW|edgmentSPeter Shor introduced [Median96]

Tkwzoe]

me to the field of quantum computing, Ethan Bernstein
provided the lower bound argument stated in section 6,

Gilles Brassard made several constructive commenigvvg7]
that helped to update the STOC paper.
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