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SUPPLEMENTARY NOTES ON CANONICAL
QUANTIZATION AND APPLICATION TO A

CHARGED PARTICLE IN A MAGNETIC FIELD

These notes were prepared by Prof. Jaffe for the 1998 version of Quantum
Physics III.

Classical mechanics is internally consistent. No amount of examination
of Newton’s Laws as an abstract system will lead you to quantum mechanics.
The quantum world forced itself upon us when physicists tried and failed to
explain the results of experiments using the tools of classical mechanics. It
took and still takes considerable guesswork to find the proper description of a
new quantum system when first encountered. Notions like internal spin and
the Pauli exclusion principle have no analog whatsoever in classical physics.

However, the equations of motion of quantum mechanics, looked at from
a particular point of view, resemble the Hamiltonian formulation of classical
mechanics. This similarity has led to a program for guessing the quantum
description of systems with classical Hamiltonian formulations. The program
is known as “canonical quantization” because it makes use of the “canonical”
i.e. Hamiltonian, form of classical mechanics. Though it is very useful and
quite powerful, it is important to remember that it provides only the first
guess at the quantum formulation. The only way to figure out the complete
quantum mechanical description of a system is through experiment. Also,
recall from 8.05 that there are many quantum mechanical systems (like the
spin-1/2 particle, for example) whose Hamiltonians cannot be obtained by
canonically quantizing some classical Hamiltonian.

We will begin 8.06 by applying the method of canonical quantization to
describe the motion of a charged particle in a constant magnetic field. In
so doing, we shall discover several beautiful, and essentially quantum me-
chanical, phenomena: Landau levels, the integer quantum Hall effect, and
the Aharonov-Bohm effect. Our treatment will be self-contained, and thus
of necessity will barely scratch the surface of the subject. We will, how-
ever, be able to grasp the essence of several key ideas and phenomena. This
part of 8.06 serves as an introduction to the condensed matter physics of
electrons in materials at low temperatures in high magnetic fields, which is
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a vast area of contemporary experimental and theoretical physics. The in-
teger and fractional quantum hall effect (we shall not treat the fractional
case) were both discovered in experiments done the 1980’s, and were among
the biggest surprises in physics of recent decades. They have been the sub-
ject of intense investigation ever since, including by many physicists here at
MIT. Furthermore, understanding gauge invariance and phenomena like the
Aharonov-Bohm effect are key aspects of the modern understanding of the
theories that govern the interactions of all known elementary particles.

And now, Prof. Jaffe’s notes. . .

c©R. L. Jaffe, 1998

1 Canonical Quantization

1.1 The canonical method

There is a haunting similarity between the equations of motion for operators
in the Heisenberg picture and the classical Hamilton equations of motion in
Poisson bracket form.

First let’s summarize the quantum equations of motion. Consider a sys-
tem with N degrees of freedom. These could be the coordinates of N/3
particles in three dimensions or of N particles in one dimension for exam-
ple. Generically we label the coordinates {xj} and the momenta {pj}, where
j = 1, 2, . . . N . We denote the Hamiltonian H(x, p), where we drop the sub-
scripts on the x’s and p’s if no confusion results. From wave mechanics where
pj is represented by −ih̄∂/∂xj,

[xj, xk] = 0

[pj, pk] = 0

[xj, pk] = ih̄δjk (1.1)

From Ehrenfest’s equation (for a general operator), AH(t), in the Heisenberg
picture,

ih̄
∂A
∂t

= [A,H] (1.2)
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(where we suppress the subscript H on the operator) we can obtain equations
of motion for the {xj} and {pj},

ih̄ẋj = [xj,H]

ih̄ṗj = [pj,H]. (1.3)

In the particular case where H =
∑

j=1,N(p2
j/2m)+V (x), it is easy to extend

the work we did in the case of the harmonic oscillator to obtain from (1.3)

ṗj = −∂H
∂xj

= − ∂V
∂xj

ẋj =
∂H
∂pj

=
pj

m
(1.4)

Equations (1.4) look exactly like Hamilton’s equations. When the two
lines are combined, we obtain Newton’s second law, mẍj = −∂V/∂xj. Of
course, we have to remember that the content of these equations is very
different in quantum mechanics than in classical mechanics: operator matrix
elements between states are the observables, and the states cannot have
sharp values of both x and p. Nevertheless (1.4) are identical in form to
Hamilton’s equations and the similarity has useful consequences.

In fact, it is the form of (1.2) and (1.3) that most usefully connects to
classical mechanics. Let’s now turn to the Poisson Bracket formulation of
Hamilton’s equations for classical mechanics. We have a set of N canonical
coordinates {xj} and their conjugate momenta {pj}. Suppose A and B are
any two dynamical variables — that is, they are characteristics of the system
depending on the x’s and the p’s. Examples of dynamical variables include
the angular momentum, ~L = ~x × ~p, or the kinetic energy,

∑
j p

2
j/2m. Then

the Poisson Bracket of A and B is defined by,

{A,B}PB ≡
N∑

j=1

{
∂A

∂xj

∂B

∂pj

− ∂A

∂pj

∂B

∂xj

}
. (1.5)

Poisson Brackets are introduced into classical mechanics because of the re-
markably simple form that Hamilton’s equations take when expressed in
terms of them,

ẋj =
∂H

∂pj

= {xj, H}PB
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ṗj = −∂H
∂xj

= {pj, H}PB (1.6)

as can easily be verified by using the definition of the PB on the dynamical
variables xj, pj, and H. The time development of an arbitrary dynamical
variable can also be written simply in terms of Poission Brackets. For sim-
plicity we consider dynamical variables that do not depend explicitly on the
time.∗ Then

Ȧ ≡ dA

dt
=

N∑
j=1

{
∂A

∂xj

ẋj +
∂A

∂pj

ṗj

}
= {A,H}PB (1.7)

where the second line follows from the first by substituting from (1.6) for ẋ
and ṗ.

Finally, to complete the analogy, note that the Poisson Brackets of the
x’s and the p’s themselves are remarkably simple,

{xj, xk} = 0

{pj, pk} = 0

{xj, pk} = δjk (1.8)

because ∂xj/∂pk = 0, ∂xj/∂xk = δjk, etc.
Now we can step back and compare the Poisson Bracket formulation

of classical mechanics with the operator equations of motion of quantum
mechanics. Compare (1.1) to (1.8), (1.2) to (1.7) and (1.3) to (1.6). It
appears that a classical Hamiltonian theory can be transcribed into quantum
mechanics by the simple rule,

{A,B}PB ⇒
1

ih̄
[A,B]. (1.9)

where the quantum operatorsA and B are the same functions of the operators
x̂j and p̂j as A and B are of xj and pj.

∗A dynamical variable may or may not depend explicitly upon the time. Any dynamical
variable will depend implicitly on the time through the variables xj and pj . Explicit time
dependence arises when some agent external to the system varies explicitly with the time.
An example is the time dependence of the magnetic interaction energy, −~µ · ~B(t), when
an external magnetic field depends on time.
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This remarkable rule tells us how to guess the quantum theory corre-
sponding to a given classical dynamical system. The procedure is called
“canonical quantization” because it follows from the canonical Hamiltonian
description of the classical dynamics. In fact there are some important limi-
tations of the canonical quantization method that will be discussed in a later
subsection. First, however, let’s summarize (and appreciate the elegance
of) the simple steps necessary to find the quantum equivalent of a classical
Hamiltonian system —

• Set up the classical Hamiltonian dynamics in terms of canonical coor-
dinates {xj} and momenta {pj}, with a Hamiltonian H.

• Write the equations of motion in Poisson Bracket form.

• Reinterpret the classical dynamical variables as quantum operators in
a Hilbert space of states. The commutation properties of the quantum
operators are determined by the rule (1.9).

Of course we cannot forget the difference between quantum and classical
mechanics: Although the fundamental equations of motion can be placed in
correspondence by the canonical quantization procedure, the different inter-
pretation of classical and quantum variables leads to totally different pictures
of phenomena.

1.2 Simple Examples

Here are some simple examples of the canonical quantization procedure.
Later we will encounter a very important and non-trivial example in the
problem of a charged particle moving in a magnetic field.

1.2.1 Bead on a Wire

Suppose a rigid wire is laid out in space along a curve ~X(s). We parameterize
the wire by a single coordinate s which measures length along the wire. Let a
bead slide without friction along the wire. This is a standard (easy) problem
in Lagrangian mechanics. The energy of the bead is entirely kinetic and is
given by 1

2
mv2 = 1

2
mṡ2, because the bead is restricted to move only along

the curve. So the Lagrangian is L = 1
2
mṡ2; the momentum conjugate to s is
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p = ∂L/∂ṡ = mṡ; the Hamiltonian is H = p2/2m; and the quantum theory
is defined by the operators ŝ, p̂ and H = p̂2/2m. In short the bead behaves
like a free particle on a line. It experiences no forces due to the curving of
the wire.

We can dress up this problem a little by adding gravity. Suppose the wire
is placed in a constant gravitational field ~g = −gŷ. Now there is a potential
energy V (s) = mgy(s). The canonical operators are still ŝ and p̂, but now
the Hamiltonian is H = p̂2/2m+mgy(ŝ).

This is actually so oversimplified a problem that interesting physics has
been lost. A real bead is held on a real wire by some force that prevents
it moving in the directions transverse to the wire. A simple model of this
would be to replace the wire by a tube whose center follows the track of the
wire, but has a finite (say constant circular) cross section. Then the particle
would be free to move in the tube, but unable to leave it. This is a more
complicated problem, but it can be analyzed pretty simply in the limit that
the transverse dimension of the tube, d, is small compared to the radius of
curvature, R(s), of the wire.† ‡ The end result is the appearance of a new
term in H proportional to the inverse of the squared radius of curvature,

H =
p̂2

2m
+mgy(ŝ)− 1

4R(ŝ)2
. (1.10)

So a real bead on a wire feels a force that attracts it to the regions where the
wire is most curved (R(s) is smallest).

1.2.2 Relative and Center of Mass Coordinates

Consider two particles moving in three dimensions and interacting with one
another by a force that depends only on their relative separation. The clas-
sical Lagrangian is

L =
1

2
m1~̇r

2

1 +
1

2
m2~̇r

2

2 − V (~r1 − ~r2). (1.11)

†The radius of curvature at some point ~X(s) is the radius of a circular disk that is
adjusted to best approximate the wire at the point ~X.

‡This problem has attracted attention recently in connection with the propagation
of electrons in “quantum wires”. If you’re interested, Prof. Jaffe can supply you with
references, since he wrote many of them.
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We could quantize this canonically in this form and obtain a two particle
Schroedinger equation. Instead let’s make the transformation to relative and
center of mass coordinates at the classical level and quantize from there. We
define

~r = ~r1 − ~r2

~R =
1

M
(m1~r1 +m2~r2)

(1.12)

where M = m1 +m2 is the total mass of the system. Substituting into (1.11)
we find

L =
1

2
M ~̇R

2

+
1

2
µ~̇r

2 − V (~r). (1.13)

where µ is the reduced mass of the two body system. Now is it easy to

read off ~P , the momentum canonically conjugate to ~R, ~P = m~̇R, and ~p,
the momentum canonically conjugate to ~r, ~p = µ~̇r. The transition to quan-
tum mechanics is accomplished by postulating the canonical commutators,
[R̂j, P̂k] = ih̄δjk, [r̂j, p̂k] = ih̄δjk, etc. The Hamiltonian is

H =
1

2M
~̂P

2

+
1

2µ
~̂p

2
+ V (~̂r). (1.14)

So just like classical mechanics, the center of mass moves like a free particle,
and the interesting part of the dynamics is just like a single particle of mass
µ moving in a potential V (~r).

These examples may seem overly elementary. If this were all canonical
quantization was good for, it would not be necessary for us to spend much
time on it. Moreover there are many mistakes to be made by applying the
canonical method too naively (as we shall see below). In fact, canonical
quantization helps us guess the quantum equivalent of some highly non-trivial
classical systems like charged particles moving in electromagnetic fields, and
the dynamics of the electromagnetic field itself.

1.3 Warnings

The canonical quantization method is not a derivation of quantum mechanics
from classical mechanics. The substitution (1.9) cannot be motivated within

7



classical mechanics. It represents a guess, or a leap of the imagination,
forced on us by the bizarre phenomena that were observed by the early
atomic physicists and that were inexplicable within the confines of classical
mechanics. The canonical quantization method is simply a recognition that
the quantum mechanics of a single particle that was developed from wave
mechanics is in fact a representative of a class of systems — those described
by traditional Hamiltonian mechanics — that all can be quantized by the
same methods.

Many systems we are interested in quantizing differ from this norm. The
attitude I would like to advocate is that we use canonical quantization as
the first step toward a quantum equivalent of a classical theory, but that
we remain open minded about the need to augment or refine the quantum
theory if phenomena force us. Some of the problems that arise on the road
from classical to quantum mechanics are listed below in order of increasing
severity (in my opinion).

1.3.1 Quantum variables without classical analogues

There are some systems that possesses quantum degrees of freedom that —
for one reason or another — do not persist in the classical regime. The best
known example is spin. When the quantum states of electrons were studied
in the 1920’s, it was soon discovered that the electron possesses other de-
grees of freedom that classical point particles don’t have. Using guesswork
and experimental information, physicists invented operators that describe the
behavior of this innately quantum mechanical variable. Nature has forced
us to postulate new quantum variables to augment the classical description
of a system. This does not represent a failure of quantum mechanics. Quite
the opposite — one of its great strengths is that phenomena without clas-
sical analog can be introduced relatively easily, without upsetting the basic
framework of the theory.

Many great advances of 20th century physics (spin, color, internal symme-
tries, etc.) fall into the category of discovering and understanding quantum
variables without classical analog. Physicists relish the possibility of such
radical departures from classical dynamics.
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1.3.2 Operator ordering ambiguities

Classical dynamical variables commute with one another, so the order in
which they are written does not affect the dynamics. Not so in quantum

mechanics. Suppose, our Lagrangian was m
2

ξ2ξ̇2

R2 .§ Then the classical Hamil-

tonian would have been H = 1
2m

p2

ξ2 . When p and ξ become operators, how

is this to be interpreted? Is it 1
ξ
p2 1

ξ
? or p 1

ξ2p? or some other variant. Us-

ing [ξ, p] = ih̄ it is easy to see that the different variants yield different
Schroedinger wave equations and therefore different physics.

This problem is called an “operator ordering ambiguity”. More physics
input is required to eliminate the ambiguity. Sometimes general principles
help: a Hamiltonian must be hermitian in order that probability be con-
served. If the ambiguous term xp (note xp 6= px) occurred in a Hamiltonian,
we could rather confidently replace it by the hermitian form 1

2
(xp + px).

Sometimes, hermiticity is not enough. General conservation laws, like con-
servation of momentum or angular momentum help. If all else fails, it is
necessary to leave the ambiguity (parameterized by the relative strength of
different hermitian combinations) and see which best describes experiment.
In practice I am not aware of physically important examples where hermitic-
ity and conservation laws fail to resolve operator ordering ambiguities.

1.3.3 Singular points

The canonical quantization method becomes complicated and subtle when
one tries to apply it to coordinate systems that include singular points. A
familiar example is spherical polar coordinates (r, θ, and φ). The origin,
r = 0, is a singular point for spherical polar coordinates — for example, θ
and φ are not defined at r = 0. If you follow the canonical formalism through
from Lagrangian to canonical momenta (pr, pθ, and pφ), to Hamiltonian, to
canonical commutators, a host of difficulties arise. Although it is possible to
sort them out by insisting that the canonical momenta be hermitian opera-
tors, it is considerably easier to quantize the system in Cartesian coordinates
and make the change to spherical polar coordinates at the quantum level.
This is the path taken in most elementary treatments of quantum mechanics
in three dimensions: the operator ~p 2 = p2

1 + p2
2 + p2

3 is recognized as the

§This is the lagrangian of a point mass on a string wrapping around a spool of radius
R. The coordinate ξ is the length of string (assumed straight) not wound up.
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Laplacian in coordinate representation (pj ↔ −ih̄∂/xj ⇒ ~p 2 ↔ −h̄2~∇2)
and the transformation to polar coordinates is made by writing the Lapla-
cian and the wavefunction in terms of r, θ, and φ. As a rule of thumb:
the canonical approach becomes cumbersome when the classical coordinates
and/or momenta do not range over the full interval from −∞ to +∞.

1.3.4 Constrained systems

Finally we must at least mention a complicated and rich variation of the
canonical quantization method that has become an important focus for re-
search in recent years. Sometimes the degrees of freedom of complicated
systems are not all independent. For example, a particle may be constrained
to move on a specified surface (in three dimensions). Then the coordinates
and velocities that appear in the Lagrangian cannot be regarded as indepen-
dent variables. The changes in x, y and z must be correlated so that the
particle remains on the surface. The canonical formalism can break down
in several (related ways). Sometimes one (or more) of the canonical mo-
menta is identically zero. If pk ≡ 0, then the associated Hamilton’s equation,
∂H/∂qk = 0 is not an equation of motion. Instead it is a constraint that
must be satisfied by the canonical coordinates and momenta at each time.
The constraint may not be consistent with canonical commutation relations.
A simple, but not particularly interesting example, would be the constraint
x+y = 0 imposed on motion in two dimensions. The constraint is not consis-
tent with the canonical commutator [x, py] = 0 and [y, py] = ih̄ because the
commutators can be added to give [x + y, py] = ih̄. This case is not serious
because we could return to the original lagrangian, use the constraint to elim-
inate one dynamical variable from the problem, and then proceed without
difficulty. In this case, we would write ξ = x− y and η = x+ y and use the
constraint to eliminate η from the problem. In more complicated cases it is
not possible to remove the constraint in this fashion, either because it is too
hard to solve the constraint equations for one or more variables, or because
the problem has some deep underlying symmetry that would be broken by
choosing to solve for and eliminate one variable as opposed to another. Dirac
realized the importance of such problems and developed a method to handle
quantization under constraints. Other powerful yet practical methods were
developed by L. D. Faddeev and V. N. Popov in the 1960’s. Quantum ver-
sions of electrodynamics, chromodynamics (the theory of the interactions of
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quarks and gluons) and gravity all make use of these modern extensions of
the idea of canonical quantization.

2 Motion in a Constant Magnetic Field – “Lan-

dau Levels”

2.1 Introduction

A pretty and relatively simple application of canonical methods in quantum
theory is to the motion of a charged particle in a constant magnetic field.
This problem was first solved by the great Russian theoretical physicist, Lev
Landau. In recent years condensed matter physicists have found interesting
applications of Landau’s problem to real physical systems.

Suppose a magnetic field ~B0, constant in magnitude, direction, and time
fills a region of space. For definiteness we assume ~B0 points in the ê3 direction.
All points in the xy-plane are equivalent — a simple example of translation
invariance. The classical motion of a charged particle in a constant magnetic
field is determined by the Lorentz force law,

m~̈x = e ~E +
e

c
~v × ~B. (2.15)

When ~E = 0 the force always acts at right angles to the velocity, so kinetic
energy is conserved. For simplicity, we restrict the motion to the xy-plane.
Then the particle moves in a circle at a constant angular velocity,

mv2

r
=

e

c
vB0

ωL ≡ v

r
=
eB0

mc
(2.16)

ωL is known as the Larmor frequency. (You can also find it called the cy-
clotron frequency.)

Quantizing this system requires all the apparatus of the canonical quan-
tization method we developed earlier in these notes. To analyze the problem
quantum mechanically we must first find the classical Hamiltonian that de-
scribes the system. Then we will be able to go over to the quantum domain.
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This requires us to introduce the concept of a vector potential , ~A, which
determines the magnetic field by its curl ,

~B = ~∇× ~A . (2.17)

Once we have the Hamiltonian, we will solve the quantum problem, illustrate
some of the subtleties, and apply what we have learned to the Aharonov-
Bohm and Integer Quantum Hall Effects . A recurring theme in much of this
study is how the system reflects the underlying translation invariance in the
xy-plane. The magnetic field is independent of x and y. The Hamiltonian
does not respect this symmetry, however, because the vector potential de-
pends on x and y in an asymmetric manner. In the end the physics must be
translation invariant but it will take some work to demonstrate this.

2.2 Classical Hamiltonian

This section and the next rewritten by KR to avoid mention of the La-
grangian. Since this year many 8.06 students are not very familiar with
Lagrangians and Hamiltonians in classical mechanics, I will never mention
the Lagrangian. It is after all only the Hamiltonian that is needed for our
quantum mechanical purposes.

We now need the classical Hamiltonian which describes the dynamics of a
charged particle in a constant magnetic and electric field, moving according
to the Lorentz force law (2.15). (Lets allow for a nonzero electric field, in
addition to the magnetic field. We’ll need this later.) A detailed derivation
of the Hamiltonian is more appropriately the subject of a course in elec-
trodynamics. Here I will tell you the answer and show that the Hamilton
equations reduce to the Lorentz force law. The Hamiltonian is:

H =
1

2m
(~p− e

c
~A)2 + eφ , (2.18)

where the electrostatic potential φ and the vector potential ~A describe the
magnetic and electric fields via (2.17) and

~E = −~∇φ− 1

c

∂ ~A

∂t
. (2.19)

Note that the Hamiltonian H depends on ~x because ~A and φ do. We must
now check that Hamilton’s equations reproduce the Lorentz force law.
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The first Hamilton equation is just

ẋi =
∂H
∂pi

=
pi − e

c
Ai

m
(2.20)

or
mẋi = pi −

e

c
Ai . (2.21)

Note that the canonical momentum ~p is NOT the same as the kinematical
momentum m~v. You should not be disturbed about this. Your intuition
about what constitutes the canonical momentum conjugate to the coordinate
x relies upon momentum conservation, and momentum is not conserved in
this problem. So that you do not feel completely at sea, note that

H =
1

2
m~v2 + eφ (2.22)

which is a sensible expression for the energy of the particle: the magnetic
field acts at right angles to the particle’s velocity and therefore does not
contribute to its energy. Starting with (2.22), however, and guessing that
~p = m~v is wrong: this would lead to a H(~x, ~p) whose Hamilton’s equations
fail to reproduce the Lorentz force law. As we shall now confirm, the correct
choice is (2.18), meaning that ~p and m~v are related by (2.21)

The second Hamilton equation is:

ṗi = −∂H
∂xi

=
e

mc

3∑
k=1

(
pk −

e

c
Ak

)
∂Ak

∂xi

− e
∂φ

∂xi

. (2.23)

Henceforth, we shall not write the
∑

symbol, understanding that any re-
peated indices (like k above) are summed from 1 to 3. We now substitute
the first Hamilton equation into the second and obtain

ṗi =
e

c
ẋk
∂Ak

∂xi

− e
∂φ

∂xi

, (2.24)

where we have employed the implied summation notation.
We now differentiate (2.21) with respect to time to obtain another ex-

pression for ṗi:

ṗi = mẍi +
e

c
Ȧi +

e

c

∂Ai

∂xk

ẋk . (2.25)
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The last term here is a “convective term”: the ~A experienced by the particle
can change with time either because ~A changes in time or because the particle
moves and ~A changes in space. The convective term is obtained by the chain
rule, upon noting that we are always interested in ~A(~x(t)). Note that we
have used the implied summation notation in writing this term.

We now combine (2.24) and (2.25) and use (2.19) to obtain:

mẍi =
e

c
ẋk

(
∂Ak

∂xi

− ∂Ai

∂xk

)
+ eEi . (2.26)

It is now just a matter of applying various identities to see that this is in fact
the Lorentz force law. Noting that

∂Ak

∂xi

− ∂Ai

∂xk

= (δimδkn − δinδkm)
∂An

∂xm

= εikj εjmn
∂An

∂xm

, (2.27)

wherein we have introduced our old friends the Kronecker δ the antisymmet-
ric ε and made repeated use of the implied summation notation, we find

mẍi =
e

c
εikj ẋk εjmn

∂An

∂xm

+ eEi . (2.28)

Now, we just have to remember that the curl of any two vectors ~U and ~V is
defined as (~U × ~V )i = εijkUjVk to see that we have derived the Lorentz force
law

m~̈x =
e

c
~̇x× ~∇× ~A+ e ~E =

e

c
~v × ~B + e ~E (2.29)

from the Hamiltonian H of (2.18). Voilà.

2.3 Canonical Quantization

To quantize, we postulate canonical commutation relations among operators
~x and ~p:

[xj, pk] = ih̄δjk

[xj, xk] = [pj, pk] = 0.

(2.30)

and interpret the Hamiltonian H(~x, ~p) of (2.18) as the quantum mechanical
Hamiltonian operator. It is crucial that we have correctly identified the
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classical canonical momenta ~p, such that the Hamilton equations obtained
from H(~x, ~p) describe the physics. It is only once we have done so that we
know how to apply the canonical quantization procedure. That is, it is only
once we have done so that we know what ~p operators satisfy (2.30), and know
the quantum mechanical Hamiltonian operator.

In order to write the Hamiltonian explicitly, we must prescribe a vector
potential corresponding to ~B0 = B0ê3. We choose

~A =
B0

2
(x1ê2 − x2ê1) . (2.31)

It is easy to verify that ~∇ × ~A = B0ê3, however other choices such as ~A =
B0x1ê2 or ~A = −B0x2ê1 would do just as well. They all describe the same
magnetic field. In classical mechanics we know that physics depends only
on ~B. The same is true here in the Landau problem, even though at this
moment we have only the Hamiltonian which does depend on the choice of ~A.
We shall verify in lecture that although different choices of vector potential
do result in different Hamiltonians, they yield the same energy eigenvalues.

Substituting the explicit choice (2.31) for ~A into the Hamiltonian H of
(2.18), we find

H =
1

2m
{(p1 +

eB0

2c
x2)

2 + (p2 −
eB0

2c
x1)

2}+
1

2m
p2

3

=
1

2m
(p2

1 + p2
2 + p2

3) +
1

2
mω2(x2

1 + x2
2)− ωL3 (2.32)

where ω = 1
2
ωL = eB0/2mc, and L3 = x1p2− x2p1 is the angular momentum

in the x1−x2 plane. So the system looks like a particle in a two-dimensional
harmonic oscillator with an additional potential −ωL3. Having solved the
harmonic oscillator before, we can easily construct the energy eigenvalues
and eigenstates for this problem.

2.4 A solution to the quantum equations of motion

First consider conservation laws: Apparently angular momentum about the
ê3 – axis is conserved, [L3,H] = 0. So is momentum in the ê3 direction,
[p3,H] = 0. First, we dispose of the p3 dependence by restricting the problem
to motion in the x1−x2 plane. Less formally we could equally well diagonalize
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p3, labeled our eigenstates by its eigenvalue, k3, and add (1/2m)k2
3 to our

eigenenergies.
The other components of momentum, however, are not conserved:

[pj,H] 6= 0 (2.33)

for j = 1, 2. This comes as a surprise: since the magnetic field is uniform in
space we would expect the system to be translation invariant, and therefore
to find momentum conserved. On the other hand, the classical motion is
circular, so perhaps we should not be surprised that the usual concept of
momentum has to be amended. Resurrecting momentum conservation will
be a principal task in the following analysis.

To classify the eigenstates of (2.32) we introduce standard harmonic os-
cillator “creation” and “annihilation” operators (in the following we replace
the coordinates x and y by x1 and x2),

xk ≡
√

h̄

2mω
(ak + a†k) pk ≡ −i

√
h̄mω

2
(ak − a†k), (2.34)

and a± ≡ 1√
2
(a1 ∓ ia2), with the usual commutation relations,[

aj, a
†
k

]
= δjk,

[aj, ak] = [a±, a±] = [a∓, a±] = 0[
a±, a

†
±

]
= 1,

(2.35)

Substituting into H and L3 we obtain

L3 = h̄
(
a†+a+ − a†−a−

)
,

H = h̄ω
(
a†+a+ + a†−a− + 1

)
− h̄ω

(
a†+a+ − a†−a−

)
= h̄ωL

(
a†−a− +

1

2

)
,

(2.36)

which has a straightforward, though unusual interpretation. Eigenstates of
H and L3 are labeled by the number of quanta of + and − excitation,

N± ≡ a†±a±

N±|n+, n−〉 = n±|n+, n−〉
(2.37)
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± quanta carry ±1 unit of angular momentum, but only n−- quanta con-
tribute to the energy . So the energy eigenstates, known as Landau levels , are
each infinitely degenerate. After exploring some of the properties of Landau
levels we will return and try to sort out this degeneracy.

To summarize:

• There are two physical conserved quantities, the energy E and z-
component of angular momentum, L.

• Equivalently, the number of “oscillator quanta”, n+ and n− are con-
served, with

– E(n+, n−) = h̄ωL(n− + 1
2
), and

– L(n+, n−) = h̄(n+ − n−).

• E is independent of n+, and n− can take on any non-negative integer
value, so each Landau energy level is infinitely degenerate.

• For energy (n−+ 1
2
)h̄ωL the tower of degenerate states begins at angular

momentum −n− and grows in steps of h̄ to infinity.

2.5 Physical Interpretation of Landau Levels

The results of the last section are as puzzling as they are enlightening. Clas-
sically a particle moving in the x1-x2y plane under the influence of a constant
magnetic field, B0ê3, can have any energy and its (circular) orbit can be cen-
tered at any point (x1, y1). In the quantum world the states are gathered
into discrete energy levels separated by h̄ωL. Each level is vastly degenerate.
The Landau Hamiltonian, eq. (2.32), on the other hand, singles out a spe-
cific origin of coordinates about which the harmonic oscillator potential is
centered. In this section we explore the meaning of the Landau degeneracy
and (eventually) explain how the translational invariance so obvious at the
classical level, is manifest in the quantum theory.

2.5.1 The location and size of Landau levels

Despite superficial appearances each energy eigenstate found in the previous
section can be placed wherever we wish in the x1-x1 plane. The simplest
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way to see this uses the coherent state formalism that was developed in 8.05.
Since the energy depends only on n− we can superpose states with different
n+ without leaving a fixed energy level. Define, then, the coherent state

|α〉 ≡ expαa†+|0, 0〉 (2.38)

where |0, 0〉 is the eigenstate of eq. (2.32) with n+ = n− = 0, and α is
an arbitrary complex number. Eq. (2.38) creates a coherent state in the +
oscillator but leaves n− = 0 untouched. Using eq. (2.34) and eq. (2.35) it is
easy to show that

〈x1〉 = `0 Reα

〈x2〉 = `0 Imα, (2.39)

where `0 =
√
h̄/mω, so by choosing the real and imaginary parts of α =

(x1 − ix2)/`0 we can center a state with energy E0 = 1
2
h̄ωL wherever we

wish.
Momentum and velocity are not directly proportional in this problem.

The state |α〉 provides a graphic example: The quantum equation of motion
for xk tells us,

ẋk =
1

ih̄
[xk, H] (2.40)

so it is easy to show that the expectation value of the velocity is zero in the
state |α〉:

〈α|ẋk|α〉 =
1

ih̄
〈α|[xk, H]|α〉

=
1

ih̄
〈α|xkE − Exk|α〉 = 0. (2.41)

so the state centered at (x1, x2) does not wander away with time. On the
other hand the components of the momenta p1, and p2 do not vanish in the
state |α〉,

〈p1〉 =
h̄

`0
Imα

〈p2〉 =
h̄

`0
Reα, (2.42)
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but this has no direct physical interpretation because the momenta not sim-
ply mv.¶

In contrast to its position, the size of a Landau level is directly connected
to its energy and to the strength of the external magnetic field. To see this
we make a semiclassical estimate of the area, A(n−). Since v/r = ωL, and
classically E = 1

2
mv2, we have r2 = E/2mω2

L. Now the quantum theory

requires (2.36), so r2 = (h̄/mωL)
(
n− + 1

2

)
. This becomes more transparent

if we multiply by πB0 to form the flux through the orbit, ΦL(n−) ≡ πr2B0,
and substitute for ωL,

ΦL(n−) =
hc

e
(n− +

1

2
) (2.43)

It appears that the flux through the particle’s orbit comes in units of a fun-
damental quantum unit of flux , Φ0 ≡ hc/e! In the next section, we shall see
that something very close to this characterizes the full quantum treatment.

2.5.2 A more careful look at translation invariance

In this section we take a more sophisticated approach to the Landau problem
that will clarify both the degeneracy of the Landau levels and the way in
which the system manages to respect homogeneity in the xy-plane. We begin
with a canonical transformation, trading xj and pj for new variables,

Π = p1 +mωx2

φ =
1

2

(
x1 −

p2

mω

)
P1 = p1 −mωx2

P2 = p2 +mωx1

(2.44)

It is easy to check that the Landau Hamiltonian, (2.18), can be written in
terms of Π and φ alone,

H =
1

2m
Π2 +

m

2
ω2

Lφ
2, (2.45)

¶We shall see in lecture that 〈pk〉 is not gauge invariant, and therefore cannot correspond
to a physical observable. 〈mvk〉 = 〈pk − (e/c)Ak〉 is gauge invariant. KR.
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with [φ,Π] = ih̄. Once again, we have a harmonic oscillator, with eigenener-
gies En = (n+ 1

2
)h̄ωL.

The degeneracy formerly associated with n− is now connected with the
P1 and P2. Since [Pk, φ] = [Pk,Π] = 0 we see that P1 and P2 are candidate
constants of the motion. To see what symmetry they generate consider the
commutators of Pk with xj, the spatial coordinates. A brief calculation yields

[xj, Pk] = ih̄δjk (2.46)

So the new “momenta”, Pk, generate translations of the coordinates in the
usual sense. Thus the symmetry associated with the constants of the motion
(and the degeneracy of the Landau levels) is translation invariance. This is
a welcome result. However, we cannot simply diagonalize P1 and P2 along
with H because they do not commute with each other ,

[P1, P2] = −2imωh̄. (2.47)

Since the commutator of P1 and P2 is a c-number, perhaps we can con-
struct functions of them which do commute. The simplest possibility is to
look at finite translations of the form,

T1(b1) ≡ e−i
P1b1

h̄

T2(b2) ≡ e−i
P2b2

h̄ .

(2.48)

According to our study of translations, these operators should translate x1

and x2 by b1 and b2 respectively. Indeed, it is easy to show that on account
of (2.46),

T1(b1)
†x1T1(b1) = x1 + b1

T1(b1)
†x2T1(b1) = x2

(2.49)

and so on.
The crucial question is whether we can choose b1 and b2 such that the

finite translations commute, [T1(b1), T2(b2)] = 0. First, let’s determine the
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effect of T1(b1) on P2,

f2(b1) ≡ T1(b1)
†P2T1(b1)

df2

db1
=

−i
h̄
T1(b1)

† [P1, P2] T1(b1)

= −2mω, so

f2(b1) = f2(0)− 2mωb1

= P2 − 2mωb1.

(2.50)

This enables us to apply the operator T1(b1) to T2(b2),

T †
1 (b1)T2(b2)T1(b1) = e−2ib1b2mω/h̄T2(b2), or

T2(b2)T1(b1) = e−2ib1b2mω/h̄T1(b1)T2(b2).

(2.51)

So the finite translations fail to commute only by virtue of this multiplicative
factor of unit magnitude. If (and only if) we choose the parameters b1 and
b2 so that the phase is a multiple of 2π then the translations commute. This
condition is

2mωb1b2/h̄ = 2πN (2.52)

for an integer N . This defines a rectangle of area b1b2 in the xy-plane. Let
us find the flux through this rectangle,

Φ(b1, b2) = b1b2B0 =
πh̄

mω
N = NΦ0 (2.53)

So we have established a maximal set of commuting operators for the
Landau problem: H, T1(b1), and T2(b2), where b1 and b2 obey (2.53) com-
pletely characterize the states of a charged particle in a constant magnetic
field.

Let’s take some time to interpret this result. . .

Translations in the n+, n− basis Now that we know that T1(b1) and

T2(b2), commute with H when ~b ≡ (b1, b2) satisfies (2.53), we can use them
to translate the states we found in §2.4 around the xy-plane. The motivation
for this is to understand the degeneracy of the Landau levels associated with
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the n− quantum number. Since the state with n+ = n− = 0 is localized
at the origin, we anticipate that the translation by ~b will produce a state
localized around ~b.

Consider, then, the state with n+ = n− = 0 — a harmonic oscillator
ground state centered at ~x = 0. Now translate this state to ~b, where (b1, b2)
satisfies the condition (2.53) with N = 1, so they represent the smallest
translation that commutes with the Hamiltonian,

|~b, 0, 0〉 ≡ T1(b1)T2(b2)|0, 0〉. (2.54)

This state is normalized to unity because the operators T are unitary. It has
energy E = 1

2
h̄ωL and 〈~x〉 = ~b. What does it look like in terms of the original

basis |n+, n−〉? To answer this we must express the translations in terms of
the {ak}. Using the Baker-Hausdorf Theorem, a short calculation gives:

|~b, 0, 0〉 = exp

(
−1

2

|b|2

`20

)
exp

(
b∗a†+
`0

)
|0, 0〉, (2.55)

where b ≡ b1− ib2 and `0 =
√
h̄/mω is the natural scale of lengths associated

with the Landau problem. This is an example of a “coherent state”, as we
discussed in §2, superposing an infinite series of degenerate states with differ-
ing values of n+. Note that n− = 0 is preserved so, as promised, translation
did not change the energy of the state. The prefactor is of particular interest
because it determines the overlap of the translated state with the original
state, |0, 0〉,

|〈0, 0|~b, 0, 0〉|2 = exp

(
−2π

b21 + b22
2b1b2

)
. (2.56)

The exponential is bounded by e−2π. Thus the overlap of the original state
and its translation to the next “cell” is very small. The same analysis applies
to any of the eigenstates |0, n−〉. We can translate each of these energy eigen-
states to any point on rectangular lattice (n1b1, n2b2) throughout the plane.
Although these states are not orthonormal, they they give us a qualitatively
correct picture of the solutions of the Landau problem as towers of nearly
localized energy eigenstates with E = (n+ 1

2
)h̄ωL situated in unit cells on a

grid labeled by any pair of distances b1 and b2 satisfying (2.53).
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Eigenstates of the finite translations Another, more conventional, ap-
proach is to study eigenstates of our maximal set of commuting operators,
H, T1(b1), and T2(b2). First we choose some b satisfying (2.53). Since Tk is
a unitary operator its eigenvalues are complex numbers of unit magnitude,
which we parameterize by

T1(b1)|φ1, φ2, n〉 = eiφ1|φ1, φ2, n〉
T2(b2)|φ1, φ2, n〉 = eiφ2|φ1, φ2, n〉

H|φ1, φ2, n〉 = (n+
1

2
)h̄ωL|φ1, φ2, n〉

(2.57)

It is easy to see that the phase φj must be linear in bj (T1(2b1) = [T1(b1)]
2),

so we define φj ≡ kjbj, where kj is a real number in range −π/bj < kj < π/bj
because the phase φ is only defined modulo 2π. This makes these states look
very similar to plane waves even though they are not. If we construct the
coordinate space wavefunction corresponding to |φ1, φ2, n〉,

ψk1k2n(x1, x2) ≡ 〈x1, x2|φ1, φ2, n〉 (2.58)

then it is easy to see that the consequence of (2.57) is that

ψk1k2n(x1 + b1, x2 + b2) = eik1b1+ik2b2ψk1k2n(x1, x2) (2.59)

just like a plane wave, exp i(k1x1 + k2x2), would behave. The difference, of
course is that ψ has this simple behavior only for the special translations we
have discovered, not for an arbitrary translation, and as a consequence, the
“momenta” (k1, k2) are not conserved.

States like these arise in many other situations where a system is invariant
only under certain finite translations. The classic example is a crystal lattice
which is invariant if we translate by the vectors that define a unit cell but
not otherwise. In this way the Landau system resembles a two-dimensional
crystal with a rectangular unit cell whose area is determined by the flux quan-
tization condition (2.53). Wavefunctions that behave like (2.59) are known
as Bloch waves in honor of Felix Bloch who first studied quantum mechanics
in periodic structures. We will discuss them in detail when addressing the
quantum theory of electrons in metals.

Note that the states ψk1k2n(x1, x2) extend everywhere throughout the xy-
plane. This is clear from (2.59) since their amplitude arbitrary distances away
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from some original location is only modulated by a phase. Thus this basis is
very different from the quasi-localized basis we obtained by translating the
state |n+ = 0, n− = 0〉 around the plane in the previous section. Of course
they describe the same system and the same physics and are related through
the marvelous power of the superposition principle.

3 The Aharonov Bohm Effect

The vector potential, ~A(~x) makes a surprising appearance in the quantum
description of a particle in a magnetic field. It all stems from the classical
Hamiltonian,

H =
1

2m
(~p− e

c
~A)2. (3.60)

Despite the appearance of ~A in H, we know that at the classical level, the
dynamics depends only on ~E and ~B because only they appear in Newton’s
Laws, eq. (2.15). In the classical domain ~A and the electrostatic potential, φ
can be regarded as merely useful, but inessential, abstractions.

In the quantum theory H rather than mẍ is fundamental, so the possibil-
ity exists that physics depends on ~A. For the case we have studied in detail
— motion in a constant magnetic field — ~A = 1

2
~x × ~B so we cannot even

define dependence on ~A independent of ~B.
In 1959 Y. Aharonov and D. Bohm proposed a way to observe a direct

effect of ~A and established the quantum significance of ~A.‖ Although this may
seem like a somewhat technical detail, it captures some of the unusual aspects
of “reality” in the quantum world and has fascinated students ever since.
Perhaps more important, vector potentials associated with generalizations of
electromagnetism play a central role in our extraordinarily successful theories
of subnuclear particle physics. In that arena observable consequences of the
vector potentials abound.

Aharonov and Bohm proposed to consider motion of a charged particle
in the plane perpendicular to an idealized solenoid that produces a constant
magnetic field, ~B = B0ê3, but only within a circle of radius R. For r > R,
~B can be taken to vanish identically. This configuration is shown in Fig. 1
along with a couple of paths that will figure in the discussion. Even though

‖Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485.
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Figure 1: Paths for analysis of Aharonov-Bohm effect.

~B = 0 for r > R, ~A cannot vanish in this region because of Stokes’ theorem.
Consider the integral of the vector potential around the circle marked C
(which is the boundary of a disk S) of radius r shown in the figure. Then

Stokes’ theorem and the defining relation for ~A, ~B = ~∇× ~A, give∮
C

~dl · ~A =
∫∫

d2S ê3 · ~∇× ~A

=
∫∫

d2S ê3 · ~B = πR2B0, (3.61)

so ~A cannot vanish everywhere on the circle C. In fact symmetry requires
that ~A point in the azimuthal, φ̂, direction, so an elementary calculation
gives,

~A =
Φ

2πr
φ̂ for r > R (3.62)

Of course the existence of a vector potential in the region outside R, where
~B = 0, is a classical phenomenon no more surprising than the existence of
an electrostatic potential inside a uniformly charged sphere where ~E = 0.
The question of interest is whether some physical phenomenon that takes
place entirely in the region r > R, where ~B = 0 can depend on ~A. To study
this, consider a charged particle described by a wave packet that moves on
either of the two paths marked C1 and C2 in the figure. Of course a quantum
particle cannot be constrained to a definite path, but we will see that the

25



effect is the same along all paths close to C1 or C2, so a diffuse path of the
sort allowed in quantum mechanics will give the same result.

The particle’s propagation through the vector potential is determined by
the time dependent Schrödinger equation,

1

2m
(~p− e

c
~A)2ψ(~r, t) = ih̄

∂

∂t
ψ(~r, t), (3.63)

where ~p = −ih̄~∇. Define the Aharonov-Bohm phase factor,

g(~r, C) =
e

h̄c

∫ ~r

C

~dl · ~A (3.64)

where the line integral begins at the point P1, follows curve C and ends at a
point ~r. Note that

~∇g(~r, C) =
e

h̄c
~A(~r) (3.65)

independent of the curve C. Now factor the phase g out of the wavefunction,

ψ(~r, t) = exp(ig) χ(~r, t), (3.66)

and substitute into eq. (3.63). The result is that χ obeys the free Schrödinger
equation,

− h̄2

2m
~∇2χ = ih̄χ̇. (3.67)

Thus all information about the vector potential is contained in the phase
that multiplies χ.

With the from of eq. (3.66) in mind let us compare the phase accumulated
by a well-localized charged particle wave packet that begins at point P1

and propagates to P2 along either path C1 or C2. We start with ψ(~r, t1)
concentrated at P1 at t = t1. Let us suppose, however, that ψ is a quantum
mechanical superposition of two terms, ψ(~r, t1) = ψ1(~r, t1) + ψ2(~r, t1) such
that ψ1(~r, t1) and ψ2(~r, t1) describe wave packets which subsequently (i.e.
after t1) follow the two different paths C1 and C2. At time t2, the two wave
packets both reach P2, and

ψ(~r, t2) = exp
[
ie

h̄c

∫
C1

~dl · ~A
]
χ1(~r, t2) + exp

[
ie

h̄c

∫
C2

~dl · ~A
]
χ2(~r, t2) (3.68)

with both χ1(~r, t2) and χ2(~r, t2) localized in the vicinity of the point P2.

Whatever other ( ~A-independent) relative phase may have accumulated by
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the time the wave packets have reached P2, there is an ~A-dependent relative
phase,

ψ(~r, t2) = exp
[
ie

h̄c

∫
C1

~dl · ~A
] {
χ1(~r, t2) + exp

[
ie

h̄c

∮
C̄

~dl · ~A
]
χ2(~r, t2)

}
.

(3.69)
Note that the relative phase is given by the loop integral over the closed path
C̄ = C2 − C1.

The relative phase in eq. (3.69) is measureable, for example by watching

the interference pattern on a detector at P2 as the magnetic field, ~B is slowly
changed. The phase depends only on the loop integral of ~A, which in turn
depends only on the total magnetic field enclosed within the path C̄,

g(C̄) ≡ e

h̄c

∮
C̄

~dl · ~A

= eπR2B0/h̄c = eΦ/h̄c (3.70)

where Φ = πR2B0 is the magnetic flux contained within C̄.
We have been fairly careful in this discussion to make it clear that the

particle moves entirely in a region where ~B = 0, so the only source of the
phase is the vector potential ~A. The result does not depend on the details
of the path followed by the particle. For example, if we replace the path
C2 by a nearby path C ′

2 on the same side of the solenoid, then the resulting
phase, g(C̄ ′), where C̄ ′ = C ′

2 − C1 is unchanged because g(C̄ ′) depends only
on the magnetic flux enclosed by C̄ ′, which is the same as that enclosed by
C̄. Thus it does not matter that the quantum particle cannot follow a sharp
trajectory. The Aharonov-Bohm phase is a global property of the motion, not
a property of the particle’s exact path. A similar argument shows that g(C̄)
does not depend on the gauge we choose to describe the vector potential. If
we change gauge, from ~A to ~A′, with

~A′ = ~A− ~∇Λ,

then
g(C̄) → g′(C̄) = g(C̄)− e

h̄c

∮
C̄

~dl · ~∇Λ = g(C̄) (3.71)

because the integral of the gradient of any continuous function around a
closed path is zero.

So Aharonov and Bohm have shown in this simple example, that the vec-
tor potential has physical manifestations in quantum mechanics. Although
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the phase g(C̄) depends on the magnetic flux enclosed by the path, C̄, the

path itself lies entirely in a region of space in which ~B = 0 and ~A 6= 0.
To quote Griffiths, page 349, “What are we to make of the Aharonov-

Bohm effect? Evidently our classical preconceptions are simply mistaken.
There can be electromagnetic effects in regions where the fields [ ~B and ~E]

are zero. Note, however, that this does not make ~A itself measurable —
only the enclosed flux comes into the final answer, and the theory remains
gauge invariant.” You should read Griffiths, section 10.2.4, but should for
now ignore the connection to Berry’s phase.

The Aharonov-Bohm effect does not only manifest itself as shifts in inter-
ference patterns. See pages 344-345 in Griffiths for a description of how the
Aharonov-Bohm effect leads to shifts in the energy levels for a “bead on a
loop of string” if the string is everywhere in a region with ~B = 0 but encircles
a flux carring solenoid.

4 Integer Quantum Hall Effect

The Hall Effect is an elementary electromagnetic phenomenon where a con-
ducting strip carrying a current along its length develops a current across its
width when placed in a magnetic field. The direction of the induced current
is sensitive to the sign of the electric charge of mobile species in the material
and can be used to show that conventional currents are carried by electrons
(negative charge) and that certain semiconductors contain positive mobile
charges. In 1980, von Klitzing discovered that the relation between the ex-
ternal electric potential and the Hall current is quantized in strong magnetic
fields — the conductance, IHall/V , comes in units of e2/h. Von Klitzing was
awarded the 1985 Nobel Prize for his discovery of the Quantum Hall Effect
(QHE). There has been a tremendous amount of work on this subject over
the past 20 years. New effects — including the fractional QHE — have been
discovered, and a decent treatment of the subject would fill a course. In
Quantum Physics III I would like to explain the origins of the effect — as
an extension of the Landau problem — under ideal circumstances. First I
will review the ordinary Hall Effect (though I will not assume you have seen
it before). Next I will solve an idealized quantum problem: the Schrödinger
equation for electrons propagating in the xy-plane with a magnetic field nor-
mal to the plane and an electric field in the y direction. This will lead
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to quantization of the Hall conductance provided we make some simplify-
ing assumptions about the structure of the material in which the electrons
propagate. As usual in condensed matter physics, after solving an idealized
problem I will have to return to the real world of actual materials and ex-
plain why the results of the idealized analysis survive unscathed. Much of
my presentation relies heavily on the introductory sections of the review The
Quantum Hall Effect, by R. E. Prange and S. M. Girvin (Springer-Verlag,
Berlin, 1987).

4.1 The ordinary Hall effect and the relevant variables

First let us review the ordinary Hall effect. A strip of conductor lies in the
xy-plane. A constant and uniform electric field, ~E, points in the y-direction.
A constant and uniform magnetic field, ~B, is oriented normal to the xy-plane.

First consider the case where ~B = 0. Mobile charge carriers∗∗ with charge
q accelerate in response to ~E, but suffer random, redirecting collisions with
ions. An elementary argument (presented in 8.02?) leads to the conclusion

that the electrons develop a drift velocity ~v = q ~Eτ0/m, where τ0 is the
average time between collisions. These drifting charges generate a current
density (charge per unit time per unit length in the xy-plane), ~j = qn~v,
where n is the density of charge carriers (per unit area). The result is a
current density linearly proportional to the impressed electric field,

~j =
nq2τ0
m

~E. (4.72)

The constant of proportionality relating ~j and ~E is the conductivity, and has
units (in two dimensions) [j]/[E] = `/t =[velocity]. This is simply Ohm’s
law with conductivity, σ0 = nq2τ0/m. It is useful to define the resistivity by

the relation ~E = ρ~j (which is the local analog of V = IR), in which case
ρ0 = 1/σ0. It is also useful to think of the resistivity (and conductivity) as a

matrix relating the vector ~j to the vector ~E. In this simple case, the matrix
is diagonal,

ρ =
(
ρ0 0
0 ρ0

)
. (4.73)

∗∗Electrons, for our case, but to keep track of signs we consider the charge carriers
arbitrary with charge q.
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When the magnetic field is turned on, the mobile charges respond to the
an “effective” electric field arising from the combined electric and magnetic
fields according to the Lorentz force law,

~F ≡ q ~Eeff = q ~E + q
~v

c
× ~B. (4.74)

The current comes from the charge carriers drift in response to ~Eeff and is
therefore given by ~j = σ0

~Eeff . Also, ~v = ~j/nq, so (4.74) can be rewritten as

~j = σ0
~E +

σ0

nqc
~j × ~B. (4.75)

The current is no longer only parallel to ~E: Because of the second term in
(4.75) it develops a component perpendicular to ~E. This is most conveniently

summarized in terms of a resistivity matrix, ~E = ρ~j, which is no longer
diagonal. From eq. (4.75) we have

~E =
1

σ0

~j +
1

nqc
~B ×~j. (4.76)

We take the magnetic field ~B = −ê3 and obtain,

ρ =

(
ρ0 − B

nqc
B

nqc
ρ0

)
. (4.77)

Note that an electric field in the y-direction gives rise to a current density
in the x-direction (and vice versa). This Hall current is easy to observe and
depends on the sign of the charge carriers, because the off diagonal elements
of the matrix ρ depend on the sign of q. In contrast, the normal resistivity
depends only on q2. This is the stuff of undergraduate physics labs. This Hall
resistivity describes the behavior of realistic conductors over a wide range of
conditions. Surprisingly the behavior of a system of electrons described by
Schroedinger’s equation subject to the same external fields is very different.

4.2 Electrons in crossed electric and magnetic fields

4.2.1 Setting up the problem

In this section we ignore all the complexities of a physical conductor —
electron ion interactions, thermal effects, impurities, and so forth — and
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Figure 2: Idealized Hall effect system.

consider the idealized problem of a gas of electrons moving in the xy-plane
subject to an electric field, ~E = −E0ê2, in the negative y-direction, and a
magnetic field, ~B = −B0ê3 in the negative z-direction. We assume that
the conductor forms a strip with 0 < x < W and study a section between
y = −L/2 and y = L/2. (See Figure 2.) We assume that the magnetic
field is sufficiently strong that only one of the two electron spin states is of
interest. The other is promoted to higher energy by the dipole interaction
energy, µB0.

To construct the Hamiltonian we need an electrostatic potential to pro-
duce ~E — Φ = E0y — will do; and a vector potential to produce ~B —
~A = B0yê1. Note that we have chosen a different vector potential than we
used in our solution to the Landau problem. This choice is more convenient
here, but the physics cannot depend on it. The Hamiltonian is given by,

H =
1

2m

[
(−ih̄ ∂

∂x
− eB0y

c
)2 − h̄2 ∂

2

∂y2

]
+ eE0y. (4.78)

As usual, it is convenient to introduce some scaled variables. We define the
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Larmor frequency ωL = eB0/mc as usual, and introduce the natural length

scale of the Landau problem, `0 ≡
√
h̄c/eB0. If we now scale the dimensional

factors out of (4.78) we obtain,

H =
h̄ωL

2

[
(−i ∂

∂ξ
− η)2 − ∂2

∂η2
+ 2αη

]
, (4.79)

where

ξ = x/`0

η = y/`0

α = eE0`0/h̄ωL.

(4.80)

ξ and η are scaled coordinates and α measures the energy scale of electric
relative to magnetic effects.

We now take (ξ, η, pξ, pη) to be our canonical variables, so

H =
h̄ωL

2

[
(pξ − η)2 + p2

η + 2αη
]
, (4.81)

where pξ = −i∂/∂ξ and pη = −i∂/∂η.

4.2.2 Eigenstates and eigenenergies

It is quite straightforward to find the eigenenergies and eigenstates of this
Hamiltonian. First note that pξ is a constant of the motion, [pξ,H] = 0.
We denote the eigenvalue of pξ by k. An eigenstate of pξ can be written in
coordinate space as,

ψ(ξ, η) = eikξϕ(η, k) with

H(η)ϕ(η, k) =
h̄ωL

2

[
p2

η + 2αη + (k − η)2
]
ϕ(η, k)

=
h̄ωL

2

[
p2

η + (η − k + α)2 + 2αk − α2
]
ϕ(η, k). (4.82)

This is simply a one-dimensional harmonic oscillator centered at η = k − α
with eigenenergies shifted by h̄ωL(αk − α2/2),

En(k) = h̄ωL(n+
1

2
) + h̄ωL(αk − α2

2
) (4.83)
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The associated wavefunction, ϕn(η, k) is a gaussian (multiplying a Hermite
polynomial) strongly localized around η = k − α,

ϕn(η, k) = exp−1

2
|η − k + α|2Hn(η − k + α). (4.84)

The continuous variable k labels the degeneracy of the Landau levels if ~E = 0.
When ~E 6= 0, the highly degenerate Landau level spreads out into a band
with energies that depend on ~E through α as displayed in eq. (4.83).

4.2.3 Degeneracies

When ~E = 0 this problem reduces to motion in a constant magnetic field, B0,
a problem we have just solved, albeit with a different choice for the vector
potential ~A. We can use our earlier solution to help us learn how to count
and label the states in the case ~E 6= 0.

First consider ~E = 0. When we studied Landau levels we learned to
expect one state in each energy level in an area containing one quantum of
flux, Φ0 = hc/e. So we expect each Landau level to be N -fold degenerate,
where N=Φ/Φ0, and Φ is the flux, Φ = LWB0, passing through the region
0 ≤ x ≤ W and −L/2 ≤ y ≤ L/2. We can relate this degeneracy to
the allowed values of k, which labels the degeneracy in eq. (4.83). From
(4.84) with α = 0 we see that the state with “momentum” k is localized at
η = k or y = k`0. Thus the states in the region −L/2 ≤ y ≤ L/2 correspond
to a definite range of k,

− L

2`0
≤ k ≤ L

2`0
. (4.85)

We can associate an interval in k with each state by noting that N states
must fit into the k-range given by (4.85) —

∆k =
L

`0N
. (4.86)

If we substitute N = Φ/Φ0, we obtain,

∆k =
2π`0
W

. (4.87)

The allowed values of k can therefore be labelled by an integer, p,

kp =
2π`0
W

p+ ζ (4.88)
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for −LW/4π`20 ≤ p ≤ LW/4π`20. The constant ζ cannot be determined by
what we have done so far.

To summarize: For ~E = 0 we have found that the known degeneracy of the
Landau levels quantizes the allowed values of the “momentum”, k, according
to the rule (4.88). Referring back to the wavefunction (4.82), we find that
(4.88) amounts to a periodicity requirement, ψ(x = 0, y) = ψ(x = W, y) up
to the phase ζW . The phase ζW plays no role in the physics, so we set ζ to
zero henceforth.

Now we return to the case of interest, namely α 6= 0. We assume that the
wavefunction remains periodic in x: ψ(x = 0, y) = ψ(x = W, y), and use the
y-dependence to find the range of k. For α 6= 0, the eigenstates are centered
at η = k−α. This translates into the quantization rule k = (2π`0/W )p with

−LW
4π`20

+
αW

2π`0
≤ p ≤ LW

4π`20
+
αW

2π`0
. (4.89)

The only effect of the electric field is to shift the allowed values of the “mo-
mentum” k.

Let us summarize our solution to the problems of electrons propagating
in constant crossed electric and magnetic fields —

• The states are labeled by quantum numbers k and n,

ψ(ξ, η) =

√
`0
W
eikξ exp−1

2
|η − k + α|2Hn(η − k + α) (4.90)

where we have introduced a factor
√
`0/W so that the wavefunction

is normalized to unity over the rectangle of area LW . (We assume
exp(−η2/2)Hn(η) is normalized in η.).

• The eigenenergies are

En(k) = h̄ωL(n+
1

2
) + h̄ωL(αk − α2

2
). (4.91)

• The quantum numbers n and k range over the values,

n = 0, 1, 2, . . .

− L

2`0
+ α ≤ k ≤ L

2`0
+ α. (4.92)
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• The degeneracy of the Landau levels is broken by the electric field. Each
Landau level breaks up into a “band” of very closely spaced levels. The
width of the band is ∆E = h̄ωLαL/`0 = eE0L, which is just the change
in the classical electrostatic energy of the electron over the length of
the conductor. As long as the magnetic field is strong we can assume
that the now-smeared-out Landau levels remain well separated from
one another.

• The other effect of the electric field is to shift the average “momentum”
of the electrons in the Landau bands from zero to α. We shall now see
that this shift has the effect of producing the classical Hall current —
with a quantum twist. . .

4.2.4 The Hall current

Now let us calculate the current that flows in the x-direction in response
to the electric field in the −y direction. The electric current carried by a
quantum gas of electrons is its probability current multiplied by the elec-
tric charge q = −e. As you show on a problem set, the expression for the
probability current density is

~j =
h̄

m
Imψ∗~∇ψ − e

mc
~Aψ∗ψ (4.93)

In the gauge we are using, Ay = 0. Given this, and given the fact that the
harmonic oscillator wavefunctions, Hn, are real, we conclude that there is no
current in the y (ê2) direction. This is remarkable since ê2 is the direction
of the external electric field! The x-dependence of ψ(x, y) is complex, so
a current in the ê1 direction may exist. Substituting (4.90), multiplying
by −e, we obtain a current density in the ê1 direction associated with the
state labeled by n and k. This current density depends on the details of
the harmonic oscillator wavefunctions. If we integrate over y from −L/2 to
L/2 we obtain a simple expression for the current in the ê1 direction from an
electron with “momentum” k in the nth Landau level,

IH(n, k) = − eh̄k

m`0W
. (4.94)

where the subscript H on I reminds us that this is the Hall current. Note
that the contribution of the ~Aψ∗ψ term in the current density (4.93) is odd
in y and so vanishes once we integrate over y.
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Now let us suppose that all states in a given Landau band are filled and
calculate the associated current. This means that we sum (4.94) over the
allowed range of k. For α = 0 the negative and positive values of k cancel
and we get ~j = 0 for α = 0. For α 6= 0 we replace the sum over p by an
integral,

IH(n) = − eh̄

m`0W

∫ p+

p−
k(p)dp (4.95)

where p± are the limits on p given in eq. (4.89). This yields,

IH(n) = −e
2

h
E0L (4.96)

corresponding to a Hall conductance of σ = e2/h independent of the size of
the sample (L and W) and n — the label of the Landau band. If N Landau
bands are filled then the conductance is −Ne2/h. In the matrix notation
of the previous section, we have found that the idealized quantum problem
leads to a purely off-diagonal conductance matrix

σ =

(
0 −Ne2

h

+Ne2

h
0

)
, (4.97)

The resistance matrix is the inverse of σ.
To summarize: If the idealized quantum treatment is justified, the con-

ductance is purely off-diagonal: an external field in the ê2 direction leads to
a current in the ê1 direction; and if N Landau bands are filled then the off
diagonal (Hall) conductance is quantized in multiples of e2/h.

4.2.5 A description of the integer quantum Hall effect

Now it is necessary translate the rather abstract calculation we have just
completed into a description of the effect observed by von Klitzing and oth-
ers. I don’t have the time or expertise to do justice to the richness of the
phenomena in realistic conductors, but I will try to sketch the physics in a
somewhat idealized situation.

Figure 4 shows the results of a measurement of the Hall resistance (on
the left vertical axis) and the longitudinal resistance (on the right vertical
axis) as a function of nhc/eB0, measured on an idealized sample at low
temperature. Two effects stand out: (1) the Hall conductance (1/RH) is
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Figure 3: (From R. E. Prange and S. M. Girvin, The Quantum Hall Effect,
Springer-Verlag, Berlin, 1987.

quantized in integer multiples of e2/h over ranges of magnetic field strength.
The plateaus in 1/RH are very flat and separated by steep increases as 1/RH

grows from one integer value to another. (2) The longitudinal resistance,
on the other hand, vanishes when RH is constant, and is finite when RH is
varying. The longitudinal resistance depends on the geometry of the sample
as it does for normal metals under normal conditions. The possible values of
the Hall resistance, on the other hand, are independent of the geometry of the
sample. It depends on the sample only through the magnetic field strength,
B0 and the charge density, n. Note that a smooth line interpolating through
the steps in RH gives the classical relationship 1/RH = nec/B0 as expected
from the classical analysis at the beginning of this section (see eq. (4.77)).

To understand Fig. 4 it is necessary to figure out what is happening
to the electron spectrum as nhc/eB0 is increased. Since electrons obey the
Pauli exclusion principle, only two electrons (one of each spin projection)
can be placed in each spatial state. For B0 = 0 the states available to the
electrons form (essentially) a continuum. For B0 6= 0 the continuum breaks
up into Landau levels separated by gaps. Each Landau level can hold one
electron in an area corresponding to a single flux quantum. That area is
given by hc/eB0. The number of electrons that can be accomodated in a
given Landau level grows as B0 increases. When B0 is extremely large, all
the electrons can be placed in the lowest Landau level. For large B0, the
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Figure 4: Longitudinal and transverse resistance for the quantum Hall effect.
(From Prange and Girvin.)

splitting between spin up and spin down electron levels also becomes large,
so we can ignore the higher spin state. The ratio of the number of electrons
per unit area, n, and the number per unit area per Landau level, eB0/hc,
gives us the number of Landau levels that must be occupied as a function of
B0 (at fixed n),

N(B0) = nhc/eB0, (4.98)

which is exactly the independent variable in Fig. 4.
We know from the analysis of the previous section that the Hall conduc-

tance is quantized when a Landau level is exactly full. Fig. 4 together with
our interpretation of the variable nhc/eB0 seems to be saying that 1/RH

behaves as though the Landau level were exactly full for a range of B0.
The key to understanding the integer quantum Hall effect is the role of

impurities . We have treated the electrons as an ideal gas, free to orbit in Lan-
dau levels. Real experiments are done using almost-two-dimensional electron
systems called “inversion layers”, in which the electrons are essentially free to
move in the xy-plane but are localized in z at a planar interface between one
type of semi-conductor and another. In any real system, there are impurities.
This means that while many electron energy levels are delocalized as in the
ideal case — allowing them to move through the two-dimensional system and
respond to external ~E and ~B fields, other energy levels remain pinned, ie.
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Figure 5: Localized and extended states in a “realistic” two-dimensional
electron gas. (From Prange and Girvin.)

localized , around impurities. Electrons that fill these localized levels do not
conduct current. A picture of the energy levels in a realistic two-dimensional
electron gas is shown in Fig. 5: localized states in between bands (in this case
Landau levels) of delocalized states. The striking appearance of the integer
quantum Hall effect can be understood by considering the sequential filling
of localized and delocalized states as a function of 1/B0.

We begin with very large B0, at the far left of Fig. 4. The lowest Landau
level is only partially filled. Electrons in a partially filled Landau level give
rise to a Hall conductance that is a fraction (the “filling fraction”) of the
quantum e2/h. As B0 decreases, the Landau level fills. The conductance is
exactly e2/h. As B0 decreases further electrons are forced into higher localized
levels between the first and second Landau levels. These electrons do not
conduct, so the Hall conductance stays fixed at e2/h. When B0 decreases
still further, the second Landau level quickly fills and the conductance rises
to 2e2/h. Succeeding intervals of filling localized and delocalized levels gives
rise to the step-like pattern shown in Fig. 4. Eventually, at low magnetic
field strength, the steps smooth out to follow the interpolating dashed line
that marks the classical Hall resistance.

The explanation of the behavior of the longitudinal resistance also de-
pends crucially on the existence of impurities. In the last section we found
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that electrons in Landau levels do not contribute to the longitudinal conduc-
tivity of a sample. This idealization breaks down in the presence of electron
scattering from impurities. Such scattering generates a normal, longitudinal
resistance when Landau levels are partially full. However, when a given Lan-
dau level is exactly full, the electrons have no unoccupied levels into which
to scatter and the longitudinal resistance vanishes. In the domains of B0

where the localized states are filling the situation remains unchanged — the
localized electrons do not participate. When a Landau level again begins to
fill, scattering again generates a longitudinal resistance.

We have only scratched the surface of the myriad of phenomena asso-
ciated with the behavior of materials in the presence of magnetic fields.
Many aspects of these systems are studied by condensed matter theorists
and experimenters in the MIT Physics Department. For further readings we
recommend the book by Prange and Girvin.
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