Scattering and Resonances

Most of our knowledge of nuclei and of “elementary” particles
and of the forces acting at the nuclear and subnuclear level comes
from scattering experiments. In these experiments, a beam of par-
ticles is used to bombard a target, and the deflections of the inci-
dent particles upon collisions with the target particles are mea-
sured. If the energy of the incident particles is sufficiently large,
the scattering process can become very complicated, with the crea-
tion of new particles in violent reactions.

In this chapter, we will discuss only the simple case of elastic
scattering of a particle by a potential. This potential may be
thought of as the potential exerted by the target particle on the
incident particle; the coordinate x or r that we will use for the
incident particle should therefore be thought of as a relative coor-
dinate giving the distance between the particles. The recoil mo-
tion of the target particle can be taken into account by introducing
the coordinates of the center of mass, as in Section 8.2; but we will
not deal with this detail here,

We will first discuss scattering in one dimension. This frees
us from the complications imposed by angular momentum, and
permits us to bring many of the fundamental concepts into sharper
focus.

Throughout this chapter, we will adopt the position represen-
tation, since this is the most convenient for scattering problems
with potentials defined as functions of position.

11.1 Elastic Scattering in One Dimension
Consider a particle moving in one dimension in a potential that is
different from zero only in some finite range. The particle is inci-

dent from a large distance, interacts with the potential, and then
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Fig. 11.1 A typical potential in one dimension. The range R of the poten-
tial is finite.

again moves out to a large distance. A typical potential is the fol-
lowing (see Fig. 11.1):

Vix) forO<x<R
V=<0 forx <R (1)
o forx <0

The quantity R is called the range of the potential.!

It might seem strange to use a potential that restricts the mo-
tion of the particle to positive values of x. But this case of excep-
tional importance, because the effective potential for the radial
motion of a particle moving in three dimensions often has the form
given by Eq. (1). If the potential in three dimensions is a function
of r only {a central potential), then we can separate the radial
motion from the angular motion by assuming that the incident
particle is in an eigenstate of angular momentum. The Schr-
dinger equation for three dimensions then reduces to a Schr-
dinger equation for one dimension, with r as the one-dimensional
coordinate [we saw examples of this reduction of the Schridinger
equation in Egs. (8.6) and (8.37)]. The radial motion of the particle
then reduces to one-dimensional motion with a potential which
may be taken as infinite at r = 0. Note that although the case of the
Coulomb potential fits the pattern given in Eq. (1), the range of

! For potentials that tend to zero sufficiently quickly as r increases—such as
potentials proportional to an exponentially decreasing function—the definition of
the range can be relaxed somewhat. But in this section we will concentrate on
piecewise constant potentials, for which the range is determined by the point at
which the potential disappears.
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this potential is infinite, and this introduces some exceptional
complications in the scattering problem; we will not deal with the
Coulomb potential or other potentials of infinite range.

First we will solve the scattering problem for the trivial case
V(x) = 0. This means that we are dealing with a free particle
which is reflected by the infinitely high barrier at x = 0. Suppose
that the particle has energy E; then the magnitude of its momen-
tum is p = V2mE and the wave vector is k = p/h. The wavefunc-
tion that represents the stationary state of positive energy E must
have an incoming part e ** and an outgoing part e’**, These parts
describe, respectively, waves traveling to the left and to the right.
In the total wavefunction ¢(x), the incoming and outgoing waves
must be superposed in such a way that the boundary condition
#{0) = 0 is satisfied. This implies that the only viable superposi-
tion is

¢(I) « etk — g—tkx 2)

In writing this wavefunction, we have omitted the time depen-
dence: it is given by the usual factor e =%,
The wavefunction (2) is not normalizable, but we find it con-
venient to insert an extra factor 1/24, so
_ 1w —ikry — qi
qb(x)—-z-}(e“‘-e #*) = sin kx (3)
Next, we must examine the scattering problem with a nonzero
potential. We assume that the potential has a finite range R, as in
Eq. (1). In the region x > R, the wavefunction will again have an
incoming and an outgoing part, as in the case of zero potential.
For the incoming part, we take —(1/2i)e %%, exactly the same as in
Eq. (3); this will make it easy to see what the effects of the poten-
tial are. The outgoing part must be e*** multiplied by some coeffi-
cient. We will use the notation {1/2i)e2® for this coefficient. The
wavefunction is then

\b(x) = _.]‘_ (eikx+2i8 _ e—ikx) forx > R (4)
2i

The quantity 8 is real. Thus, e2?® is simply a phase factor, and
the intensities of the incoming and outgoing waves are equal.
This equality of incoming and outgoing intensities is required by
the conservation of probability. The potential cannot destroy or
create probability—it cannot destroy or create particles.

The value of 6 depends on the potential V{(x) and on the en-
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ergy E; it can be calculated by solving the Schrédinger equation in
the interior region, x < R. Before we proceed with such a calcula-
tion, we briefly consider some general properties of the quantity
8. This quantity is called the phase shift for the following reason:
Suppose that we compare the probability densities given by Eq.
(3) [corresponding to V(x)} = 0] and by Eq. (4) [corresponding to
V(x) # 0]. These probability densities are

lo(x}]? = sin® kx (5)

and
lgr(x)|? = sin? (kx + &) (6)

The comparison of these functions shows that, in the presence of
the potential, the maxima and minima of the probability distribu-
tion are shifted toward the origin by a distance 8/k relative to their
location in the absence? of the potential (see Fig. 11.2). As we will
see, the value of 8 is positive for an attractive potential; the maxima
and minima are then shifted toward the origin. The value of § is
negative for a repulsive potential; the maxima are then shifted
away from the origin.

We can define a scattered wave s(x) as the difference be-
tween Y(x) and ¢(x):

bs(x) = ¢(x) — ¢(x) forx >R (7)

The scattered wave tells us how much the potential changes the
wave from what it is in the absence of the potential. The scattered
wave is zero if the potential is absent, which means that there is no
scattering.

We can also write ig(x) as follows:

o L tkerois _ mikey L ke ik
Psix) = 57 (e e~ ) 2; (€ e~ ')
tkx '
== 621' (e2i5 - 1) (8)

From this we see that the scattered wave is a purely outgoing
wave. The amplitude of this outgoing wave is called the scatter-

% Absence of potential means that the function V{x}in Eq. (1) is zero; but the
potential for x < 0 remains infinite.
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[ (x)12

Fig.11.2 Shift the maxima and minima of the probability distribution. The
black curve is |i(x)|2; the gray curve is |p{x}/%.

ing amplitude:

[scattering amplitude] = e—l'[:% = _21—1 (e28 — 1) (9)

The modulus squared of the scattering amplitude is a measure of
the probability of scattering, or the strength of scattering:

[ probability ] "

of scattering

2

2 26
= |ysl® = e_2i_1 =sin®s  (10)

[ scattering }
amplitude

As we will see in Section 11.4, in three dimensions the cross sec-
tion is proportional to the square of scattering amplitude. This
means that § or, more precisely, sin® § is what we can measure by
experiment. From the measured value of 8 as a function of energy,
we can then try to extract information about the interaction respon-
sible for the scattering.

Another interesting property of § is the following: 2Ad8/dE
gives the time delay that the incident particle suffers by having to
pass through the potential. To understand this, suppose that we
send a wave packet toward the origin from some large distance.
The packet then returns to us after a certain time, having passed
through the potential and having been reflected at the origin. The
time delay is defined as the difference between the times taken
when there is a potential and when there is no potential. This
time “delay” can be either positive or negative. A negative “de-
lay”” means that the particle spends less time in the region of the
potential than a free particle. This can happen if the potential is
attractive, and therefore increases the speed of the particle. But it
can also happen for a repulsive potential, since then the particle’s
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path length can be shortened if it is reflected before it reaches the
origin,

For the calculation of the time delay, we suppose that our
wave packet has an average energy Ej. The incoming wave
packet is then

Yinlx, 1) = f f(E) e™iVEmEihg—iEth Jp (11)

where f(E) is some function peaked around E = E;. Here we have
written the wave packet as an integral over energies rather than an
integral over momenta (as we did in Chapter 2), because it better
suits our present purposes; of course, it is easy to change the vari-
able of integration from p to E, or vice versa. According to Eq. (4),
correspon\(;i_ng to an incoming wave e *V2"E# there is an outgoing
wave —e!V2ZmEdf+4E) Tp the latter wave, we have indicated the
energy dependence of § explicitly. Hence

Youlx, t) = = [ fE) oiVEmExh+UEI—iEWh Jp (12)

Provided that the peak of f(E) at E = Ej is sufficiently narrow, we
can approximate 8(E) = 8(Ey) + 8'(Eq)(E — Ey) and therefore

Youtlx, ) = —e2bE—iEatih J’ f(E) o VEME o —UE~Eo)[t-268 EQVh Jp7 (13)

Let us compare this with the corresponding wave packet in the
absence of the potential. The latter is

Wiolx, £) = —g 10t j f(E) e*VImEhe-iEmENh g (14)

Ignoring the overall phase factors that stand in front of these inte-
grals, which have no effect on the motion of the envelope of the |
packets, we see that t — 2k8'(E;) appears in Eq. (13), where t " §
appears in Eq. (14). Hence the former packet is behind the latter
by 248'(Ey), that is,

ds

[time delay] = 24 iE

Furthermore, according to Eqs. (13) and (14), this time delay is the
only effect the potential has on the outgoing packet. Of course, 3
this depends on the approximation that the packets have a very
narrow energy distribution. In general, the packet will suffer both
a time delay and a distortion of its shape as it passes through the
potential.
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11.2 Scattering by a Square Well

For a simple example of scattering in one dimension, we take the
piecewise constant potential shown in Fig. 11.3:

] forx <0
Vix) = 3§ Vo for<x<a (15)
0 forx>a

The wavefunction in the exterior region, x > a4, must have the form
given in Eq. (4):

P(x) = e®sinfkx + §) forx>a (16)

with k = V2mE/#. The wavefunction in the interior region, x < a,
must be such as to vanish at x = 0:

wi(x) = Asink'x forx<a a7n
with k' = V2m(E + Vy)/h.

The boundary conditions to be imposed at x = g are that the
wavefunction and the derivative of the wavefunction are continu-
ous {see Section 3.1). Thus,

A sin k'a = e® sin(ka + 8) (18)
k'A cos k'a = ke®® cos(ka + &) (19)

These boundary conditions determine the wave amplitude A and
the phase shift 8. The equation for the phase shift is

r

k
tan ka + 5 cot k'a

cot & = ; k {20)
1- T cot k'a tan ka
Vix)
a
0 X

Fig. 11.3 A square potential well.
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Exercise 1. Obtain this expression from Eqs. (18) and (19}).

From cot 8 we can readily evaluate factor e2® that appears in
the scattered wave [see Eq. (8)]:

028 — cotd + i
cot§ — ¢

tan ka + kK cot k'a + i (1 K cot k'a tan ka)
_ k k (1)

tan ka + % cotk'a — i (1 - % cot k'a tan ka)

Figure 11.4a is a plot of § as a function of ka for the case V =
3.4#2/(2ma?). This particular value of Vy is interesting because
the nuclear force between a neutron and a proton with parallel
spins (triplet state) can be approximately described by such a po-
tential.®> Figures 11.4b, ¢, and d are plots of the square of the
scattering amplitude, the wave amplitude |A| in the interior re-
gion, and (1/a)dé/dk. The time delay is related to d&/dk:

| B _tmdd
which can also be written as

1ds hk .

2JE " Sam X [time delay] (23)

Since #k/m is the speed of the particle in the absence of the poten-
tial, Eq. (23) indicates that the quantity (1/a)dé/dk plotted in Fig.
11.4d is the time delay expressed in units of the “free transit time”
2a/(hk/m) that the free particle takes to cover the distance 2a.
Note that for k- 0, the time delay in our example tends to infinity;
however, the ratio of the time delay to the free transit time remains
finite. '

3 The values of V; and of a for the neutron—proton interaction in the triplet
state are 38.5 MeV and 1,93 x 10718 m, respectively. However, the interaction can
be described by such a potential only at low energies (E,,, << 200 MeV). Athigher
energies, the hard repulsive core of the nuclear interaction as well as inelastic
processes become important. Note that m is the reduced mass of the neutron—
proton system.
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Fig. 11.4 Plots of (a) the phase shift, {b) the square of the scattering ampli-
tude, {c) the wave amplitude |A] in the interior region, and (d) the derivative

{1/a)ds/dk of the phase shift versus k for V3 = 3.44A%/(2ma?).

In the limit of large energy, Fig. 11.4 suggests that
8§—0
sin%8 — 0
A-—-1

[time delay] — 0

(24)
(25)
(26)
@7)

It is easy to understand how these limits arise. If the particle has a
very large energy (E => V), then it hardly notices the potential,
and it behaves pretty much as a free particle, so the scattering
tends to zero. In arriving at Eq. (24), we have made use of a con-
vention for the phase shift. Obviously, Eq. (20) determines & only
modulo 7, and we can say only that 8 — nw as E — . We adopt the

convention that n is to be taken as zero.
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Fig, 11.5  Plots of (a} the phase shift, (b) the square of the scattering ampli-
tude, (c) the wave amplitude [A| in the interior region, and (d) the derivative
(1/a)ds/dk of the phase shift versus & for V,, = 2.1£2/(2ma?).

As a second example, Fig. 11.5 plots the results of a similar
calculation for a somewhat weaker potential, with Vy = 2.1%%
(2ma?). This happens to be the potential that describes the inter-
action between a neutron and a proton with antiparallel spins (sin-
glet state).* Comparing Figs. 11.42 and 11.5a, we see that the
behavior of the phase shift at low energy is quite different. For the
stronger potential, §(0) = 7 and for the weaker potential 8(0) =0,

This difference between our two examples is a consequence
of an interesting theorem that relates the net change of the phase
shift between E = 0 and E = = to the number of bound states in the

* For the neutron—~proton interaction in the singlet state, Vy = 14.3 MeV and
a =250 x 10-15 m,
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potential. This theorem, known as Levinson’s theorem, asserts
that the phase shift at zero energy is

8(0) = Nar (28)

where N is the number of possible bound states in the potential.
According to the results of Section 3.4 [see Eq. (3.94)], the square
well with Vy = 3.4%2/(2ma?) has exactly one bound state; hence N
= 1 and 8(0) = #. The square well with V = 2.142/(2ma?) is too
shallow to have any bound states; hence N = 0 and 8(0) = 0.
The proof of the theorem is very simple. Consider a particle
moving in some potential, constrained to the region x > 0. Pre-
tend that the particle is also constrained so x < L, where L is large
(ultimately, the limit L — « will be taken). This means the particle
is confined in an infinite potential well of width L; all the eigen-
states are discrete, which makes it easy to count them. If the po-
tential in the region 0 < x < L is zero, then the positive-energy
eigenfunctions are ¢ = sin kx, and since they must vanish at x = L,

kL = nm (29)
Hence the number of states in a small momentum interval Ak is
An = L ak (30)
"
If the potential is not zero, then the positive-energy eigenfunc-

tions outside the range of the potential are  x €% sin(kx + 8) [see
Eq. {4)], and the condition that they vanish at x = L is

kKL + 8 = nw (31)
The number of states in a small momentum interval Ak is therefore
an =L ak + L) ak (32)

T T

where 8'(k) = d6/dk. The change, caused by the potential, in the
number of positive-energy eigenstates in the interval Ak is then
(1/7) 8'(k) Ak. The total change in the number of positive-energy
states is

1" Lo
AN = L [" otk ak = L 1s) - 00 (33)

This equation for the change in the number of states is indepen-
dent of L, and hence is also valid in the limit I.— . The change in
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the number of positive-energy states implies an opposite change
in the number of negative-energy states, since states cannot appear
or disappear as the strength of the potential is varied. When the
potential is zero, there is a certain number of states; turning on the
potential cannot change the number of states, only their energies
(it can be shown quite generally that the energy of a state depends
continuously on the strength of the potential). Some of the posi-
tive-energy states become negative-energy states (bound states),
others are shifted to some different positive energy (see Fig.
11.6). The decrease in the number of positive-energy states must
therefore be compensated by an increase in the number of bound
states:

N = —AN = % [5(0) — 5(c)] (34)

With the convention 8{x) = 0, this completes the proof of Eq. (28).

As a corollary of this theorem we obtain another interpretation
of the quantity &'(k). According to Eq. (33), (1/w)ds/dk is the
change in the density of states caused by the potential. For exam-
ple, Fig. 11.5d can be interpreted as a plot of the change in the
density of states and shows that, near zero energy, the continuum
states in the presence of the potential are much more densely
packed than in the absence of potential.

Before we proceed with our discussion of scattering, let us
look at the bound states of the potential given in Eq. (15). There
is, of course, a well-known and straightforward procedure for solv-
ing the Schrodinger equation for this case (see Section 3.4). But
here we will deal with a clever alternative method that makes use
of the positive-energy solution we examined above.

potential potential
absent present

___________ — | pOSitive-energy

— —— states [continuum)
——--.:_\ T ——
N ——
— ~o T —
"--._\ ~
E=0 ~ N
~ ~

~
T e negative-energy
states (bound states)

Fig. 11.6 Shifts in the energies of some states produced by the presence of
the potential.
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If E < 0, then

_V2m(E + Vo) _ V2m(V, — [E])

k' % 7 (35)
and
= Y2mE "22""& (36)
We will use the notation k = V2m|E|/4, so
. k=ix (37)

Now, Eqgs. (16) and (17), with 8 and A determined by Eqs. (18) and
(19), give a solution of the Schrodinger equation with the correct
‘boundary conditions, irrespective of the sign of E. However, if
E < 0, it is convenient to express this solution in terms of the real
variable k. Equation (16) then becomes

lb(x) _2% (eziae—xx _ ex:t) ’ (38)

where, by Eq. (20),

kl‘
tan ixa + o cotk'a
cotd = % {39)
1 - n cot k'a tan ika

Although Eq. (38) is a solution of the Schrédinger equation, it
is not an acceptable solution; it has the wrong behavior at infinity,
with ¢i(x) —» © as x — ©, We must somehow get rid of the increas-
ing exponential e*. Since the normalization of the bound-state
waveflunction must in any case be carried out after we have found
an acceptable solution, we may as well ignore an overall factor of
proportionality, and replace Eq. (38) by

l,b(x) o pTKE — e*?-isexx (40)

From this, it is obvious that in order to get rid of the increasing
exponential, we need only demand that

e 2 = 41)

Since & as given by Eq. (39) is complex,® this equation has solu-
tions. The equation can also be rewritten as a condition on cot &:

5 Our previous argument requiring 8 to be real applies only when E > 0.
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) ei5 + e—i8 . 1+ e—2i6 .
cotd =1 eia — e_'ﬁ =1 1 — e_2i5 =1 (42)

Substituting this into Eq. (39), we obtain

cotk’'a = — f,— (43)
or

This equation for the energy eigenvalues coincides with Eq. |
(3.89), obtained by other means. |

Exercise 2. Derive Eq. (44) from Eq. (39).

As already mentioned above, the square well with Vo = 3.4%2%/
(2ma?) has exactly one bound state. In the case of the triplet neu- |
tron—proton interaction, this bound state corresponds to the
deuteron, with a binding energy |E| = 2.22 MeV.

The square well with Vo = 2.14%/(2ma?) has no bound state.
However, it is customary to say that there is a virtual state, or an |
antibound state, in singlet neutron—proton scattering. By this is
meant the following: We have seen that a bound state is obtained |
by eliminating the increasing exponential from Eq. (38). A virtual, i
antibound “state” is obtained by eliminating the decreasing expo- |
nential, so the wavefunction becomes a purely increasing expo-
nential.® This requires |

| _ _
I cot ‘2m(v0ﬁ EDa_ _ Vs < [E] (44)

|

|

|

|

|

e*® = (45) |

VamVe=TEDa_ , [TEL_
cot — Oﬁ EDa _ Vo — |E| (46)

Exercise 3. Derive Eq. (46).

8 There exists several other, slight different definitions of virtual state. The
definition given here is the most straightforward. Note that the use of the word
virtual in relativistic perturbation theory (Feynman diagrams) is unrelated to our
use here.

which implies that
]
H

o T T T P T
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The preceding equation yields a binding energy |E| = 170 keV for
the virtual singlet state of the deuteron.

It must be emphasized that the presence of a virtual “state”
means nothing but that Eq. (45) is satisfied. The virtual “state” is
no more than a root of €2¥; it is not a physical state (hence the
name). The wavefunction increases exponentially at large dis-
tances and is therefore not acceptable; the system can never be put
into this “state.” Nevertheless, the presence of the virtual “state”
makes itself felt by its influence on the scattering at small (posi-
tive) energies. Thus, the behavior of sin%8 near zero energy (see
Fig. 11.5b) can be explained in terms of the presence of the nearby
virtual “state” at small negative energy.

The quantity €% by which the outgoing wave is multiplied is
usually called the S-matrix, or more precisely, an S-matrix element
(S stands for scattering). In general, each scattering reaction |a) —
|B), where |a) represents some initial state and |8) some final state,
possibly with a different final set of particles, is assigned an
S-matrix element 5,5 which is related to the probability amplitude
for the occurrence of the reaction. The S-matrix is the totality of all
such elements.

We have seen that e?®® = « at a bound state. This means that
the S-matrix has a pole (singularity) at the bound-state energy:

bound state = pole in S-matrix 47

This rule holds in general and is very important in attempts at
constructing the S-matrix (“S-matrix theory”). The program of
S-matrix theory is this: Since we often do not know the forces that
act between particles, we cannot solve the Schrédinger equation
or the relativistic version of this equation. But we can neverthe-
less find the S-matrix, which contains all the information about
scattering, by somehow discovering all the singularities. This
would determine the S-matrix completely, because if all the singu-
larities of a function are known, at both real and complex values of
g_ its argument, then the function is determined. Since the singulari-
; ties at both real and complex (unphysical) values of the energy
must be discovered, the program of S-matrix theory is ambitious

and difficult.

11.3 Resonances

A particle incident on the square well of Eq. (15) never suffers any
large time delay. Neither does the wave amplitude |A| in the inte-
rior region ever become large. We will now examine the case of a
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more complicated potential, consisting of a square well and a
barrier:

1
|
!
-Va for0<x<a
|

Vi fora<zx<2a

Vix) = {48)
0 forx>a
o forx <0

This potential is plotted in Fig. 11.7. The barrier in this potential
can prevent the escape of a particle from the interior region for a
fairly long time, provided the energy is just right, and this leads to
the accumulation of a large wave amplitude in the interior region.

The solution of the Schrédinger equation for the potential
(48) is of the form

A sin k'x for0<x<a
Yix) = < Bsin k"x + C cos k"x fora<zx<2a (49)
e® sin(kx + 8) for x > 2a

where k' = V2m(E + Vy)/fi and k" = V2m(E — V,)/A. Note that

it E < Vy, then k" will be imaginary, but it is not necessary to treat
this case separately.

The usual boundary conditions at x = ¢ and at x = 2a provide
four equations that determine the four unknowns A, B, C, and 6.
Of these unknowns, A and § are the most interesting. The-formu- .
las for them are rather messy, and it is more instructive to examine |
plots of these quantities. Figure 11.8 shows plots of 8 as a function ]
of ka, and plots of the square of the scattering amplitude, the wave
amplitude |A| in the interior region, and (1/a) d6/dk. These plots

Vix)

Fig. 11.7 A square well with a barrier.
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Fig. 11.8 Plots of (a) the phase shift, (b) the square of the scattering ampli-
tude, (¢) the wave amplitude |A| in the interior region, and (d) the derivative
(1/a) d8/dk of the phase shift vs, k for the square well with a barrier.

were prepared for Vg = 1.042/2ma? and V| = 5.0£%/2ma?. A strik-
ing feature of Fig. 11.8 is the resonance or quasi-stationary state
that appears at ka = 1.8. At this energy

i. the phase shift suddenly increases by (nearly) 7 and passes
through #/2.

ii. the square of the scattering amplitude has a sharp maxi-
mum and reaches sin%8 = 1

iii. the wave amplitude in the interior region has a sharp max-
imum
iv, the derivative d&/dk has a sharp maximum.

The quantity d8/dk is related to the time delay by Eq. (23),
which we can write as

ds _ v [time delay]
dk [free transit time]

(50)
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where R is the range of the potential, and the free transit time is
2R/(fik/m). The time delay may be regarded as the lifetime of the
resonant state. If this lifetime is very large, the resonance will
resemble a stationary state (for the latter the lifetime is infinite).
We can also express this in another way: the maximum in d8/dk at
the resonant energy means that the density of states is at a maxi-
mum. If this maximum is very large and very narrow, the density
of states resembles that of a stationary state (for the latter, the
density of states is infinite at the stationary state and zero else-
where, that is, it is a delta function).

From our knowledge of classical oscillating systems, we ex-
pect that at the resonant energy, the amplitude of oscillation of the
system should build up to a very large value. In the present case,
the quantity |A| may be regarded as the amplitude of oscillation of
the system, and it indeed has the expected behavior. Figure 11.91is
a plot of the absolute value squared of the wavefunction near reso-
nance. Clearly, the amplitude of oscillation is large inside the
potential well.

Unfortunately, in scattering experiments, measurements are
performed on the incident particle only when it is far away [rom
the scattering region; that is, the incident particle is observed only
before and after the collision with the target particle. Hence the
quantity |A| is not directly accessible in these experiments. What
can be measured directly is the scattering probability sin25. The
measurement of sin%8 as a function of energy determines & and
d8/dE as a function of energy, except perhaps for an ambiguity in

sign.
Iy (012
10
5 —
' | N\_‘ x
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The time delay 24d8/dE at resonance can be obtained directly
by measurement of the time that a particle takes to move though
the potential. The wave packet used for such a measurement must
have a width Ak that is small compared with the width of the
resonance. Since the latter width is approximately w(d8/dk)™!, we
need

ds\ ™
sk <7 (2) (51)
and the packet must have a length
1 dd
Ax = m = '&I (52)

This means that the time of departure and of arrival of the particle
is uncertain by

_Ax _dém
At =2 > (53)
or
ds
At = h R—E- (54)

Hence, At is much larger than the time delay that we seek to
measure. This means that it will be impossible to perform the
measurement by observation of a single particle. However, re-
peated measurements on identically prepared systems will give an
average time delay which is not affected by the large uncertainties
of the individual measurements. The time delay has, therefore,
only a statistical significance.

We saw that in the case of the potential given by Eq. (48), the
conditions (i)—(iv) all hold at resonance. We will now proceed in
general, without any special assumption about the shape of the
potential, and examine what relationships we can establish be-
tween the conditions (i)—(iv).

First, we show that condition (i) implies all the others. If §
increases sharply by about m in the vicinity of k = a, passing
through & =#/2 at k = a, then we can approximate 8 in this vicinity
by

5 = tan~! " e 2 (55)
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where B is a positive constant such that

1 db

3" dk liwe (56)

The function (55) has the correct value of § and the correct value of
the derivative d8/dk at k = a; it is therefore effectively equivalent
to a two-term Taylor-series expansion. According to Eq. (35), 1

2i8=1+itan8_yk—a—i£

¢ l1—itand k—a+i8 (57) :

and hence the square of the scattering amplitude is ‘
ws|2 = sinZs = 1 o2 — 1|2 = B (58)

s 4 (k — e + g* |

This has a maximum at k = @, as required by condition (ii).

If we write Eq. (58) as a function of the energy, with E, =
a?52/2m and with the approximation (E — E,} = (k — a)afi?/m,
then the square of the scattering amplitude becomes

re

W’SI2 = Sin2 & = (E _ Ea)z + %Fz (59) ‘
where
:

r= 2a£ﬁ (60)

1
}
and the approximation has been made. Equation (59) is known as -
the Breit—Wigner resonance formula. It gives the behavior of the 1
square of the scattering amplitude near resonance under the as-
sumption that the nonresonant scattering can be neglected. Fig- i
ure 11.10 shows plots of 8 and of sin28 near resonance, according to |
the Breit—-Wigner formula; note that the shape of these plots is in i
agreement with Fig. 11.8. :

It is obvious that condition (iv) is also satisfied since, with the i
approximation (55),

ad _d |, B _ B8
k- G-k k—af+ B

(61)

which, indeed, has a maximum at k = o.

We will now give a simple, but not rigorous, argument that a
maximum in d8/dk is usually associated with a maximum in the
wave amplitude in the interior region. If there is a time delay
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sin? §

——— 1.0

0.5

(a) ' (b)

Fig.11.10 Phase shift 5 and square of the scattering amplitude |Ws|® = sin%8
near resonance.

9#ds/dE, the emergence of a wave train that enters the potential is
delayed, and for a time 2Ad8/dE probability is flowing into the
region of the potential, but there is no corresponding flow out of
the region of the potential; thus, probability accumulates in this
region. The incoming wave has a probability density |e~%**/2i|2 =
1/4;7 its probability current is the product of this probability den-
sity and the speed #k/m:

hk

[probability current] = g

W | =

The accumulated probability is then

[probability current] x [time delay] = %-f:?—’: X 24 g—g (62)

However, we can also express the change of probability that the
potential produces in the interior region as

[T iz = 1o/ dx

where ¢ = sin kx [see Eq. (3}] and ¢ is the solution of the Schro-
dinger equation for the given potential. Hence®

7 The wavefunction is not normalizable, and hence this probability and all the
probabilities in the following equations are relative, not absolute.

8 Equation (63) is not exact since, strictly, the time delay can be defined only
for wave packets, and not for the harmonic waves used in the above argument.
The exact equation has an extra term [sin 2kx — sin 2(kx + §)}/2k added to the right
side.
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1 #% db
5= aE = [ (w19 de (63)
that is,
db
=2 s (i - |of) dx (64
Since
f: || dx = f: sinkx dx < R (65)

we see that a large maximum in d8/dk must correspond to a large
maximum in [|$|? dx, and conversely. This implies that the aver-
age wave amplitude in the interior is at maximum, in agreement
with condition (iii).

Next we consider the implications of condition (ii). If the
square of the scattering amplitude goes through its maximum
value (sin?8 = 1), then 8 must pass through #/2. However, such a
maximum is not a resonance unless § is increasing with energy.
For example, the peak at ka = 1.0 in Fig. 11.8b does not corre-
spond to a resonance; the time delay is negative at this energy, and
there is no quasi-stationary state. Maxima with negative time de-
lays are not rare. In fact, the number of such maxima is never less
than the number of resonances. Levinson’s theorem tells us that,
on the average, 8 does not increase with energy [8(0) — 8(x) = 0];
since at each resonance, 8 increases through 7/2, it must again
decrease through 7/2, and therefore give a nonresonant maximum
in the square of the scattering amplitude.

Although in general the existence of 2 maximum in sin28 is not
a sufficient condition for the existence of a resonance, the exis-
tence of a narrow maximum is a sufficient condition. This is so
because a narrow maximum implies that § is passing through #»/2
very quickly, that is, |d8/dk| is large, and this is possible only if
dd/dk is positive. The reason for a positive value of dd/dk is cau-
sality. If d&/dk were negative, we would have a time advance.
But, by causality, the largest possible time advance is 2R/v, which
occurs if the incident particle is reflected at the outer edge of the
potential (or, equivalently, transverses the potential with very
large speed). Therefore, the time delay necessarily satisfies the
condition

db 2R
2h d_E = — ?
or
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This is known as the Wigner condition.®

The Wigner condition tells us that if the peak of sin?5 is so
narrow that |d8/dk| is larger than the range of the potential, then
this peak will indeed correspond to a resonance; a peak that is not
so narrow may or may not correspond to a resonance. This pro-
vides some justification for experimental physicists who, upon ob-
serving very narrow peaks in nuclear cross sections, immediately
claim that they have found a resonance.

As a next step of our investigation of the relationships among
the conditions (i)—(iv), we will show that a sufficiently sharp peak
in the quantity d8/dk—which is proportional to the time delay
expressed in units of the free transit time [see Eq. (50)]—implies
the existence of a resonance. If d8/dk has a maximum at k = a, we
can approximate this function in the vicinity by

dd éB
dk  (k—aP + B2 (67)

where ¢ and B are positive constants. Equation (67) amounts to no
more than the assumption that (d8/dk)™1 can be expanded in a

Taylor series about the point k = a:1¢
ds\™! 1
(&%) - g + g k= P (68)

We assume that the higher-order terms in this expansion can be
neglected as long as |k — a| = 8. Note that Eq. (61) is a special case
of Eq. (67) with ¢ = 1; it will be interesting to see how this special
case arises.

The differential equation (67) can be integrated to give 8 as a
function of k:

k
o) = || gtk + 8@

~ ftan! A - %” + 8(a) (69)

8 Qur argument is not rigorous, and neither is the result (66). The exact
Wigner condition is d8/dk = —(R + 1/k).

10 The Taylor series for (dé/dk)! is more convenient than that for ds/dk,
because (d8/dk)~! is small near resonance.
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We must now take into account an important restriction on the
possible values of £. It is obvious from Eq. (4) that § is defined
only modulo 7, since an increase of 8 by nw leaves this equation
unchanged. On the other hand, £ tan™! g/(a — k) is defined mo-
dulo &m. For the sake of consistency of these two equations, we
must therefore require that ¢ is an integer:

§=0,1,23,... (70)

The case & = 0 is of no interest. The cases £ = 1,2, 3, ... corre-
spond to resonances of different types. We will for now assume
that £ = 1, because this type of resonance seems to be the one that
usually occurs in nature. In this special case

5(k) = tan! —E— — T+ 5(a) (71)
which shows that 8 increases by about 7 in the vicinity of k = a.
Hence & must necessarily pass through #/2 (modulo #) in this
vicinity, and we see that all the conditions (i)—(iv) are satisfied.
To simplify matters further, let us assume that the scattering
off resonance is small, so the resonant peak in the scattering is well
isolated from the nonresonant background. In terms of Eq. (71),
this means that the constant term —#/2 + 8(a) is small and that

(k) = tan1 —E£ (72)
We conclude that under these circumstances & passes through /2
(modulo #) at k = a, so the maxima in d8/dk and in sin®8 occur at
nearly the same energy. The expression (72) is identical to (55)
and leads to the familiar Breit—Wigner formula (59).

11.4 Elastic Scattering in Three Dimensions

Many of the concepts we introduced to describe the scattering in
one dimension also apply to three dimension. Consider a particle
incident on some three-dimensional region in which the potential
V(r) is different from zero. We will call this region the interaction
region (see Fig. 11.11). The incident particle is represented by a
plane wave, and this wave is scattered by the interaction with the
potential, that is, the some portion of the wave is spread out over
all angles.



Sec. 11.4 / Elastic Scattering in Three Dimensions; Partial Waves 329

incident
wave

_ scattered
wave

#  interaction
region

Fig. 11.11 Scattering of an incident plane wave by interaction with a po-
tential. The scattering angle is measured relative to the incident direction.

For convenience, we assume that the incident wave ap-
proaches the interaction region from the negative z direction.
Thus, the incident wave is

b(r) = e (73)

As in Section 11.1, we have omitted the time dependence of this
wave; it is given by the usual factor e E#* for all our waves.

At large distances from the interaction region, the scattered
wave consists of an outgoing spherical wave with a radial depen-
dence of the form e*7/r. Here, we have included a factor of 1/r in
this wavefunction because, when the wave travels outward, it
spreads over an increasing area, and the probability density in the
wave must decrease as 1/r? (this decrease of the intensity of the
spherical quantum-mechanical wave is entirely analogous to the
decrease of the intensity of a spherical sound wave spreading out
from a small source). Since the wave need not have the same
intensity in all directions, we also want to include an angular de-
pendence in the scattered wave. We describe this angular depen-
dence by a function f(8), where 8 is the scattering angle, or the
deflection angle, relative to the incident direction (see Fig.
11.11). The scattered wave then takes the form

ikr

() = £8) — (74)
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The net wave is the sum of the incident wave and the scattered
wave,
ikr

W) = B + sle) = &% + f(6) (75)

In one-dimensional scattering, we defined the scattering am-
plitude as the amplitude of the scattered wave [see Eq. (9)]. In
three-dimensional scattering, the amplitude of the scattered wave
is f(8)/r [see Eq. (74)]; however, since the factor 1/r is always
present in three-dimensional scattering and conveys no distinctive
information about the scattering, we will omit it from the defini-
tion of the scattering amplitude:

[scattering amplitude] = £(6) (76)

We will see that the scattering probability and the scattering cross
section can be expressed directly in terms of this scattering ampli-
tude f(8).

As in Section 10.6, we define the differential cross section do
as the ratio of the number of particles scattered per unit time into a
solid angle dQ to the flux of incident particles:

[number of particles scattered per unit timeJ
into solid angle dQ) at 0, ¢

[fux of incident particles]

do-:

(77)

The flux of incident particles is the product of the probability
density of the incident wave and the speed. Since the incident
wave (73) has a probability density {e#**|2 = 1 and the particles
have a speed #ik/m,

[flux of incident particles] = 1 x %k (78)

The number of scattered particles in a small volume (see Fig.
11.12) between r and r + dr in the solid angle d() is

2

r? dr dQ = |£(9)[2 dr dQ (79)

ikr

FO =

These particles take a time dt = dr/(hk/m) to leave this volume;
hence the number emerging per unit time is

hk
foPT o (80)



Sec. 11.5 / Partial Waves in a Central Potential; The Optical Theorem 3N

Fig. 11.12 A small volume between r and r + dr in the solid angle dQ1 =
sin 8 d@ de.

and the differential cross section (77) is

do = LOL Akim 0 (81)

hkim

or

do _ 9
' i | f(6)] (82)
The total cross section is obtained by integrating the differen-
tial cross section over all angles:

do

0’=fd0’= a9

da = [ |f () da (83)

11.5 Partial Waves in a Central Potential;
The Optical Theorem '

For the calculation of the scattering amplitude f(8) and the cross
section, we need to specify the potential. Most of the potentials of
interest in physics are central potentials, that is, potentials that
depend only on the radial coordinate r. For such a central poten-
tial, the incident wave and the scattered wave can be expressed as
superpositions of eigenfunctions of the orbital angular momentum,
and each of these eigenfunctions is scattered independently of
the other eigenfunctions. The angular-momentum eigenfunctions
contained within the incident and the scattered wave are called
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partial waves. Each partial wave is characterized by the value of§
its angular-momentum quantum number [. During the scatteri
each partial wave acquires a phase shift of its own, and these phas
; shifts determine the scattering amplitude and the cross section.
: To construct the partial waves, we recall from Section 8.3 tha}
. the plane wave e** can be written as a superposition of angulard
momentum eigenfunctions:

e = Vg > V2l + L ify%8)jilkr)
=0

. We want to examine the behavior of the wavefunctions at a larg
P distance from the interaction region. Thus, we will assume that
is very large, and that the functions ji(kr) can be replaced by theif]
asymptotic forms (1/kr) sin(kr — I7/2), according to Eq. (8.114).4
The plane wave e’** then becomes 3

I

ekt ~ Iz S VAL + 1 iY6) %; sin (kr - —2—) (853
=0 3

or

N e ikr—lmf2) o —ithr—imi2} »

ekt = Vim > Val + 1i'Y%6) —1— (e - £ ) (86}
k 5 2i r r

This shows that the Ith partial wave consists of an incomi
spherical wave '

e-—i(kr—lwﬂ}

r

and an outgoing spherical wave
ei(kr—l'rrm)

r

If the potential V(r) is zero, then the sum of these incomi
and outgoing spherical waves [with the coefficients specified i
Eq. (86)] provides us with the solution of the scattering problem

If the potential is nonzero, then the solution of the scatterin
problem will still be a sum of incoming and outgoing spheri
waves, but with somewhat different coefficients. From our discus
sion of scattering in one dimension, we know that the incomin
wave is unchanged, but the outgoing wave acquires an extra phase
" factor 2%, Thus, the solution of the scattering problem is
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A A = i(kr—lw/2+28) —ilkr—Im/2)
a(r) = 2T S BT T Y (0) = (e 2 )
k= 2i

2 r (89)

According to Eq. (75), the scattered wave f(8)e’"/r is the dif-

ference between the net wavefunction i(r) and the incident wave
tkz,

1 (e(ikr—l'rr."2+23;) e—i{kr—lar.fZ})

r r

1 (e(ikr— Ini2) e—i(kr—l'n-IZ))
2{ T r

i(kr71m’2)

= YIS VAT i) et - 1) S (90)

r

Hence,

From this expression for f(8), we can calculate the differential
cross section [Eq. (82)] and the total cross section [Eq. (83)]. The
latter takes an especially simple form, in consequence of the
orthonormality relation for the spherical harmonics:

o= [ Ifo) o ——’;g, @1 + 1) sin? (92)

Exercise 4. Derive this formula for the total cross section.

An interesting result emerges from Eq. (91) if we examine the
imaginary part of the scattering amplitude at 6 = 0, called the
forward scattering amplitude. With Y%(0) = V2l + 1)/4w, we
obtain




334

Ch. 11 / Scattering and Resonances

Im [£(0)] = Im [% > vel+1 e sin 8;]
par
1 )
=-EI§=: (2l + 1) sin? § (93)
Comparison of this with Eq. (92) shows that
o= 4%’ Im £(0) (94)

This is called the optical theorem. (A similar theorem holds for
light waves, and it was known long before its rediscovery in quan-
tum mechanics.)

Finally, let us apply some of these results to a simple case of
scattering by the potential of a hard elastic sphere of radius a. If
the particles have low energy, the dominant contribution to the
scattering comes from the partial wave [ = 0 (s wave scattering);
this is so because if the particles have low energy, then they can
attain a nonzero angular momentum only if they have a large im-
pact parameter, and then they miss the sphere. Thus, for low-
energy particles, the total cross section can be approximated by the
first term in the sum (92):

o= % sin? 8 (95)
The phase shift § is easy to evaluate. In the presence of the hard-
sphere potential, the wavefunction has a node at the surface of the
sphere, that is, at r = g, whereas in the absence of the potential the
wavefunction has a node at r = 0. This means that the path of the
wave coming in and then moving back out is shortened by 2a, and
the phase of the outgoing wave is therefore shifted by 2ak relative
to the outgoing wave in the absence of potential.!! Thus, 28, =
—2ak, and Eq. {(95) becomes

o= % sin? (—ak)

or, since k is small,

11 This simple method of calculating the phase shift for the hard sphere works
for the [ = O partial wave only. The other partial waves experience an effective
centrifugal potential, and their wavelengths are not constant and not equal to 2mr/k.
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o = —(ak)? = 4ma® (96)

This quantum-mechanical scattering cross section is four times as
large as the geometrical cross section of the hard sphere,

11.6 The Born Approximation; Rutherford Scattering

Equation (92) gives us the cross section if we know the phase
shifts. However, the determination of the phase shifts requires
the solution of the Schradinger equation for each partial wave. As
we saw in Section 11.1, such a determination of the phase shifts is
quite tedious. Perturbation theory sometimes provides an alterna-
tive method for the calculation of the cross section. Here we will
deal with a simple method of calculation based on Fermi’s Golden
Rule.

Suppose we regard the potential V(r) that produces the scat-
tering as a perturbation of the free-particle Hamiltonian. Accord-
ing to Fermi’s Golden Rule, the rate of transitions from an initial
momentum eigenstate |,) to a final momentum eigenstate |y is
then

WP"’P' = %'F ('-pp'|V(r)|4’p> il::;'(EE_) (97)

With the box normalization for the wavefunctions and with the
usual expression (10.79) for the number of states per unit energy
interval, this transition rate becomes?

e*ip'-ra'ﬁ V( eip-r.'ﬁ
ser——n iy
v VOSR

From this transition rate into the solid angle dQ, we immediately
obtain the differential cross section by dividing by the incoming
flux of particles [compare Eq. (10.101)]. Since the flux of particles
associated with the incident wave is (1/V)V2E/m, the differential

cross section 18

2
Zﬂﬁ

Accordingly, the scattering amplitude is

2
R

2
d3r {3 mV2mE dQ (98)

Woop =

2
jvme@wWMd% o (99)

32 Do not confuse the volume V with the potential V(r).
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— oo | Vi) et g (100)
Here, a minus sign has been inserted to bring Eq. (100) into con-
formity with the result obtained by an alternative calculation (viaa
Green’s function) of the scattering amplitude. Equation (100} is
called the Born approximation for the scattering amplitude.

If the potential is central, we can simplify the integral in Eq.
(100) by introducing the vector

K=L-P -k-k (101)
which is the difference between the wave vectors of the incident
and the scattered particles. The magnitude of this vector is

where ¢ is the scattering angle (see Fig. 11.13}). The integration in
Eq. (100) can then be performed by means of a change to spherical
coordinates r, ©, ¢ with a new z axis along the direction of K. This
yields, with u = cos 9,

II

fe o do f f eKreos® 2 sin © dO dr

2ﬁ2

= - }1‘;% : r2 V(r) J_ll ek dy dr

2m (= ,

~ %K o V(r) sin Kr dr (103)
The Born approximation treats the potential as a perturbation

of the free-particle Hamiltonian. Hence its validity is restricted to

K=k - k|=2ksin3 (102)
|
|

Fig. 11.13 Scattering of an incident plane wave by the interaction region.
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kinetic energies that are large compared with the potential en-
ergy.!® This means that the Born approximation to some extent
complements the method of partial waves. The Born approxima-
tion requires high energies, whereas the method of partial waves
is best applied at low energies, where the angular momenta of the
particles are small, and the first few terms in the infinite sum (92)
suffice for an approximate evaluation of the cross section. Inciden-
tally, the Born approximation fails to satisfy the optical theorem
[according to Eq. (103), the scattering amplitude has no imaginary
part]. This failure can be traced to the assumption of large kinetic
energy and small potential energy implicit in this approximation.
Note that we cannot use the Born approximation for the Cou-
lomb potential, since, with V{(r) x 1/r, the integral (103) fails to
converge. However, we can use it for the screened Coulomb po-
tential, which has the form of the Coulomb potential with an extra
exponential factor e~ where b is a positive constant:

Ze2 e—rfb
Vir} = — p—— (104)

This screened Coulomb potential approximately describes the po-
tential experienced by an electron incident on an atom with many
electrons, where the charge distribution of the electrons of the
atom screens the nucleus from view. The appropriate value of the
exponential decay length b for such an atom is approximately
dmeghi2/ZV%me?. A potential of the same mathematical form as
(104)—but with a different value of b and a different overall con-
stant of proportionality—also occurs in nuclear physics. This po-
tential, called the Yukawa potential, describes the strong force
acting between two nucleons.

For the screened Coulomb potential, the Born approximation
gives us a scattering amplitude.

om Ze?
1) = 33K Zmeg

L e " sin Kr dr

_ 2m Zé® 1

T R2 4meo K2 + 1/b2 (105)

13 This requirement can be relaxed if the potential is very shallow, roughly, if
the potential is so shallow that it admits no bound state. For a simple discussien of
the limitations of the Born approximation, see, for example, D. S. Saxon, Elemen-
tary Quantum Mechanics.
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PROBLEMS

Hence the differential cross section is

do 2 (2_m Ze? )2 1
do - |f(0)l - ﬁz 41780 (K2 + libz)z (106)

If we suppose that the incident electron has a high energy, so
K2 > 1/b%, then we can neglect the term 1/b? in the denominator
of Eg. (106), and we obtain

do _ (Lm Zez_)z 1
dQ  \ 32 4mey K4

or, with K = 2k sin 48 = 2(V2mkE/#) sin 386,
do _ ( Ze® )2 1
dQ "~ \16meoE/ sint 16

(107)

Here, the dependence on the exponential decay length has
dropped out, because for a high-energy particle, most of the scat-
tering occurs near the nucleus, where the potential is strongest
and almost unscreened.

Equation (107) is the Rutherford cross section for the scatter-
ing of a particle of charge *e by a nucleus of charge Ze. The cross
section for the scattering of an alpha particle of charge 2¢ is four
times as large as (107).

1. According to Eq. (3.48), the solutions of the time-dependent Schré-
dinger equation in one dimension satisfy the identity

a R R L og*
5("’*"’)__5[%( dx *t’ax)]

{(a) Prove that if § is the wavefunction for a stationary state, then

o
2im

[l!f*(x) _84‘;?)._ ilx) -—a"b;fx)] = constant
(b) Substitute the wavefunction (4) into this identity and thereby
deduce that § must be real,

2. (a) Prove that if ¥ is a solution of the three-dimensional time-depen-
dent Schridinger equation, then

A

9 * = — . * —_ *
o7 W) = -V [%mw Vo - Ty )]

|
|

et cem ke g s
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{b) According to this equation, the quantity
S (e Ty — g V)
2im

can be regarded as the probability current. Check that for a plane
wave § = et this probability current coincides with the prod-
uct of probability density and velocity, that is, $*¢ p/m.

3. Figure 11.14 shows a potential barrier of height Vy and width «
placed adjacent to the origin. The potential is

% forx <0
Vi) =4 Vg forx <a
0 forx > a

Find the phase shift for this potential barrier, and plot as a function of the
wave number k. Are there any resonances?

Vix)

(=)

Vo

0 a

Fig. 11.14

4. Solve Eqgs. (18) and (19) for the wave amplitude A in the interior of
the square well.

5. Show that for scattering on a square well (see Fig. 11.3), the wave
amplitude |A| can never exceed 1. Show that |A| equals 1 if E =
#2a%(n + 3)4/2ma® — V), and show that this condition corresponds to
constructive interference of the de Broglie waves reflected back and
forth across the well.

6. Show that the Wigner condition (66) implies that

[F19f2 dx = — 5 sin 2kR

7. Consider particles scattering on a hard sphere of radius a. If the
particles have an energy E = 4%k%/2m, roughly what impact parame-
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10.

11.

ter is required to give angular momentum lA? Roughly what range of
values of I will contribute to the scattering on the hard sphere?

If the total cross section (92) is finite, show that 8; must approach zero
at least as fast as 1/l as | — =.

In the scattering of particles of energy E = #2k/2m by 2 nucleus, an
experimenter finds a differential cross section

dog _ 1 (0.86 + 3.07 cos 9 + 2.77 cos28)
o k2
(a) What partial waves are contributing to the scattering, and what
are their phase shifts at the given energy?

(b) What is the total cross section?

A free electron of momentum p initially directed along the positive z
axis is perturbed by a potential

Vo for|xl<alyl<alzl<a
Vix, y, z) =

0 for|x| > a,lyl >a,lz|>a

where Vj is a constant. Use Fermi’s Golden Rule to find the scatter-
ing amplitude. Find the differential cross section de (8, ¢) for transi-
tions into a small solid angle d£).

(a) Inthree dimensions, a particle is scattered elastically by a spheri-

cal potential well
Vo forr<a
Vir) =
0 forr>a

where V) is positive. Use the one-dimensional results obtained
in Section 11.2 to find the phase shift for the partial wave [ = 0. If
the energy of the particle is low, what is the differential cross
section and what is the total cross section?

(b) Footnote 3 gives the appropriate values of the parameters Vi and
a for the scattering of neutrons by protons in the triplet state.
Evaluate the total cross section at an energy E., << 10 MeV.
(Note that the mass m in our equations must be interpreted as the
reduced mass, m = im,.)

(¢} Footnote 4 gives the appropriate values of the parameters Vj and
a for the scattering of neutrons by protons in the singlet state.
Evaluate the total cross section at an energy E ., << 10 MeV.

12. A particle is scattered elastically by a “soft sphere” with a repulsive

spherical potential



13.

14,

15.
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Vo forr<a
Vir ={
0 forr>a

where Vj is positive. Evaluate the phase shift for the partial wave
| = 0. If the energy of the particle is low, what is the differential
cross section and what is the total cross section?

Integrate the differential cross section (106) over all angles and find
the total cross section.

Consider the Gaussian potential
V(r) = Voe—

Use the Born approximation to find the differential cross section and
the total cross section.

The potential for a “soft sphere” is

Vo forr<a
Vir} = {

0 forr>a

where Vy is pdsitive. Use the Born approximation to find the differ-
ential cross section and plot as a function of the scattering angle 8.




