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Quantised Singularities vn the Electromagnelic Field.

By P. A. M. Dirac, F.R.8.,, 8t. John’s College, Cambridge.
{Received May 29, 1931.)

§ 1. Introduction.

The steady progress of physics requires for its theoretical formulation a
mathematics that gets continually more advanced. This is only natural and
to be expected. What, however, was not expected by the scientific workers
of the last century was the particular form that the line of advancement of
the mathematics would take, namely, it was expected that the mathematics
would get more and more complicated, but would rest on a permanent basis
of axioms and definitions, while actually the modern physical developments
have required a mathematics that continually shifts its foundations and gets
more abatract. Non-euclidean geometry and non-commutative algebra, which
were at one time considered to be purely fictions of the mind and pastimes for
logrieal thinkers, have now been found to be very necessary for the description of
general facts of the physical world. It seems likely that this process of
increasing abstraction will continue in the future and that advance in physics
is to be associated with a continual modification and generalisation of the
axioms at the base of the mathematics rather than with a logical development
of any one mathematical scheme on a fixed foundation.

There are at present fundamental problems in theoretical physics awaiting
solution, e.g., the relativistic formulation of quantum mechanics and the nature
of atomic nuclei (to be followed by more difficult ones such as the problem of
life), the solution of which problems will presumably require a more drastic
revision of our fundamental concepts than any that have gone before. Quite
likely these changes will be so great that it will be beyond the power of human
intelligence to get the necessary new ideas by direct attempts to formulate
the experimental data in mathematical terms. The theoretical worker in
the future will therefore have to proceed in a more indirect way. The most
powerful method of advance that can be suggested at present is to employ all
the resources of pure mathematics in attempts to perfect and generalise the
mathematical formalism that forms the existing basis of theoretical physics,
and after each success in this direction, to try to interpret the new mathematical
features in terms of physical entities (by a process like Eddington’s Principle
of Identification).
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A recent paper by the author* may possibly be regarded as a small step
according to this general scheme of advance. The mathematical formalism
at that time involved a serious difficulty through its prediction of negative
kinetic energy values for an electron. It was proposed to get over this
difficulty, making use of Pauli’s Exclusion Principle which does not allow more
than one electron in any state, by saying that in the physical world almost
all the negative-energy states are already occupied, so that our ordinary
electrons of positive energy cannot fall into them. The question then arises
as to the physical interpretation of the negative-energy states, which on this
view really exist. We should expect the uniformly filled distribution of
negative-energy states to be completely unobservable to us, but an unoccupied
one of these states, being something exceptional, should make its presence felt
a3 a kind of hole. It was shown that one of theso holes would appear to us as
& particle with a positive energy and a positive charge and it was suggested
that this particle should be identified with a proton. Subsequent investigations,
however, have shown that this particle necessarily has the same mass as an
electront and also that, if it collides with an electron, the two will have a chance
of apnihilating one another much too great to be consistent with the known
stability of matter.}

It thus appears that we must abandon the identification of the holes with
protons and must find some other interpretation for them, Following Oppen-
heimer,§ we can assume that in the world as we know it, all, and not merely
nearly all, of the negative-energy states for electrons are occupied. A hole,
if there were one, would be a new kind of particle, unknown to experimental
physics, having the same mass and opposite charge to an electron. We may
call such a particle an anti-electron. We should not expect to find any of
them in nature, on account of their rapid rate of recombination with electrons,
but if they could be produced experimentally in high vacuum they would be
quite stable and amenable to observation. An encounter between two hard
Y-18y8 (of energy at least half a million volts) could lead to the creation simul-
taneously of an electron and anti-electron, the probability of occurrence of this
process being of the same order of magnitude as that of the collision of the two
Y-rays on the assumption that they are spheres of the same size as classical

* * Proc. Roy. Soc.,’ A, vol. 126, p. 360 (1930).
t H. Weyl, * Gruppentheorie und Quantenmechanik,’ 2nd ed. p. 234 (1931).
1L Tamm, < Z. Physik," vol. 62, p. 545 (1930); J. R. Oppenheimer, ‘ Phys. Rev.,’
vol. 35, p. 939 (1930) ; P. Dirac, ° Proc. Camb, Philos, See.,” vol. 26, p. 361 (1930).
§ J. R. Oppenheimer, * Phya. Rev.,’ vol. 35, p. 562 (1930).
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electrons. This probability is negligible, however, with the intensities of
y-rays at present available,

The protons on the above view are quite unconnected with electrons.
Presumably the protons will have their own negative-energy states, all of
which normally are occupied, an unoccupied one appearing as an anti-proton.
Theory at present is quite unable to suggest a reason why there should be any
differences between electrons and protons.

The object of the present paper is to put forward a new idea which is in
many respects comparable with this one about negative energies. It will be
concerfied essentially, not with electrons and protons, but with the reason for
the existence of a smallest electric charge. This smallest charge is known to
exist experimentally and to have the value e given approximately by*

heje? = 137. (1)

The theory of this paper, while it looks at first as though it will give a theoretical
value for e, is found when worked out to give a connection between the smallest
electric charge and the smallest magnetic pole. It shows, in fact, a symmetry
between electricity and magnetism quite foreign to current views. It does not,
however, force a complete symmetry, analogous to the fact that the symmetry
between electrons and protons is not forced when we adopt Oppenheimer’s
interpretation. Without this symmetry, the ratio on the left-hand side of (1)
remains, from the theoretical standpoint, completely undetermined and if
we ingert the experimental value 137 in our theory, it introduces quantitative
differences between electricity and magnetism so large that one can understand
why their qualitative similarities have not been discovered experimentally
up to the present.

§ 2. Non-integrable Phases for Wave Functions.

We consider a particle whose motion is represented by a wave function ¢,
which is a function of «, y, z and t. The precise form of the wave equation
and whether it is relativistic or not, are not important for the present theory.
We express ¢ in the form

$ = Ae", (2)
where A and vy are real functions of x, ¥, z and ¢, denoting the amplitude and
phase of the wave function. For a given state of motion of the particle, ¢
will be determined except for an arbitrary constant numerical coefficient, which
must be of modulus unity if we impose the condition that ¢ shall be normalised.

* }, means Planck’s constant divided by 2.
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The indeterminacy in ¢ then consists in the possible addition of an arbitrary
constant to the phase y. Thus the value of Y at & particular point has no
physical meaning and only the difference between the values of Y at two
different points is of any importance.

Thisimmediately suggests a generalisation of the formalism. We may assume
that y has no definite valye at a particular point, but only a definite difference
in values for any two points. We may go further and assume that this
difference is not definite unless the two points are neighbouring. For two
distant points there will then be a definite phase difference only relative to
some curve joining them and different curves will in general give different
phase differences. The total change in phase when one goes round a closed
curve need not vanish,

Let us examine the conditions necessary for this non-integrability of phase
not to give rise to ambiguity in the applications of the theory. If we multiply
¢ by its conjugate complex ¢ we get the density function, which has 8 direct
physical meaning. This density is independent of the phase of the wave
function, so that no trouble will be caused in this connection by any indeter-
minacy of phase. There are other more general kinds of applications, however,
which must also be considered. If we take two different wave functions Ym
and ¢,, we may have to make use of the product ¢,.¢,. The Integral

' j¢,,,¢,, da dy dz

is a number, the square of whose modulus has a physical meaning, namely, the
probability of agreement of the two states. In order that the integral may
have a definite modulus the integrand, although it need not have a definite
Phase at each point, must have a definite phase difference between any
two points, whether neighbouring or not. Thus the change in phase in
$mi, round a closed curve must vanish. This requires that the change
in phase in ¢, round a closed curve shall be equal and opposite to that
in ¢, and hence the same as that in Y- We thus get the general result :—
The change in_phase of @ wave function round any closed curve must-be-the same
for all the wave functions

It can easily be seen that this condition, when extended so as to give the
same uncertainty of phase for transformation functions and matrices repre-
senting observables (referring to representations in which z, y and z are
diagonal) as for wave functions, is sufficient to insure that the non-
integrability of phase gives rise to no ambiguity in all applications of the
theory. Whenever a appears, if it is not multiplied into a &y it will st
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any rate be multiplied into something of a similar nature to a ¢,,, which will
result in the uncertainty of phase cancelling out, except for & constant which
does not matter. For example, if s, is to be transformed to another repre-
senttation in which, say, the observables £ are diagonal, it must be multiplied
hv the transformation function (£|zyzt) and integrated with respect to z, y
and z.  This transformation function will have the same uncertainty of phase
s a ¢, so that the transformed wave function will have its phase determinate,
except for a constant independent of £.  Again, if we multiply ¢, by a matrix
(&'y'z't| | &y’ "2"t), representing an observable «, the uncertainty in the phase
as concerns the column [specified by «”, ¥, 2", t] will cancel the uncertainty
in v, and the uncertainty as concerns the row will survive and give the
necessary uncertainty in the new wave function a,. The superposition
principle for wave functions will be discussed & little later and when this point
is settled it will complete the proof that all the general operations of quantum
mechanics can be carried through exactly as though there were no uncertainty
in the phase at all.

The above result that the change in phase round a closed curve must be the
same for all wave functions means that this change in phase must be something
determined by the dynamical system itself (and perhaps also partly by the
representation) and must be independent of which state of the system is
considered, As our dynamical system is merely a simple particle, it appears
that the non-integrability of phase must be connected with the field of force
in which the particle moves,

For the mathematical treatment of the question we express ¢, more generally
than (2), ag & product

b=ty e, ) .

where ¢, is any ordinary wave function (f.e., one with a definite phase at each
point) whose modulus is everywhere equal to the modulus of . The un-
certainty of phase is thus put in the factor . This requires that § shall not
be a function of z, ¥, 2, t having a definite value at each point, but £ must have

definite derivati
K., = @;.B K, = a_B K, = —= Ko == =k
o L ¢ 0

at each point, which do not in general satisfy the conditions of integrability
tr,/dy = O, /ox, etc. The change in phase round a closed curve will now be,
by Stokes’ theorem,

I (%, ds) = j (curl x, dS), @)
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where d8 (a 4-vector) is an element of arc of the closed curve and dS {2 6-vector)
is an element of a two-dimensional surface whose boundary is the closed curve.
The factor ¢, does not enter at all into this change In phase.

It now becomes clear that the non-integrability of phase i3 quite consistent
with the principle of superposition, or, stated more explicitly, that if we take
two wave functions ¢,, and {, both having the same change in phase round
any closed curve, any linear combination of them ¢, ., + ¢,J, must also
have this same change in phase round every closed curve. This is because
Ym 80d ¢, will both be expressible in the form (3) with the same factor *
(i.e., the same «’s) but different ¢,’s, so that the linear combination will be
expressible in this form with the same e again, and this ¢®® determines the
change in phase round any closed curve. We may use the same factor ¢
in (3) for dealing with all the wave functions of the system, but we are not
obliged to do so, since only curl « is fixed and we may use «'s differing from one
another by the gradient of a scalar for treating the different wave functions.

From (3) we obtain .

N Ay S )
b = et (—ih ol ) ®)

with similar relations for the y, z and ¢ derivatives. It follows that if ¢
satisfies any wave equation, involving the momentum and energy operators
p and W, 4, will satisfy the corresponding wave equation in which p and W
have been replaced by p + Ax and W — i, respectively.

Let us assume that ¢ satisfies the usual wave equation for a free particle in
the absence of any field. Then ¢, will satisfy the usual wave equation for g

particle with charge —e moving in an electromagnetic ﬁeld_wlmse_pw

are
— ~A=hfe.x- Ay=—hle.x, (6)
Thus, since ¢ is just an ordinary wave function with a definite phase, our
theory reverts to the usual one for the motion of an electron in an electro-
magnetic field. This gives a physical meaning to our non-integrability of
phase. We see that we must have the wave function | always satisfying the
same wave equation, whether there is a field or not, and the whole effect of
thic field when there is one is in making the phase non.integrable.

The components of the 6-vector curl x appearing in (4) are, apart from
numerical coefficients, equal to the components of the electric and magnetic
fields E and H. They are, written in three-dimensional vector-notation,

cur1x=%H, gra.dx,,——%‘—=%E. (7)

VOL. CXXXIHI.—A, ¥
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The connection between non-integrability of phase and the electromagnetic
field given in this section is not new, being essentially Just Weyl's Principle
of Gauge Invariance in its modern form.* It is also contained in the work of
Iwanenko and Fock,t who consider a more general kind of non-integrability
based on a general theory of parallel displacement of half-vectors. The
present treatment is given in order to emphasise that non-integrable phasea
are perfectly compatible with all the general principles of quantum mechanics
and do not in any way restrict their physical interpretation,

§ 3. Nodal Singularities.

We have seen in the preceding section how the non-integrable derivatives x
of the phase of the wave function receive a natural interpretation in terms of
the potentials of the electromagnetic field, as the result of which our theory
becomes mathematically equivalent to the usual one for the motion of an
electron in an electromagnetic field and gives us nothing new. There is,
however, one further fact which must now be taken into a.ccount,'na.mely,
that a phase s always undetermined to the extent of an arbitrary iategral
mﬂtipm'mwion of the connection between the
«'s and the potentials and leads to a new physical phenomenon.

The condition for an unambiguous physical interpretation of the theory was
that tmhase round a closed curve should be the same for gll wave
functions. This change was then 'nterpreted, by equations (4) and (7), as
equal to (apart from numerical factors) the total flux through the closed
curve of the 6-vector E, H describing the electromaguetic field. Evidently
these conditions must now be relaxed. The change in phase round a closed
curve may be different for different wave functions by arbitrary multiples of
2r and is thus not sufficiently definite to be interpreted immediately in terms
of the electromagnetic field,

To examine this_ question, let us consider first a very small closed curve.
Now the wave equation requires the wave function to be continuous (except
in very special circumstances which can be disregarded here) and hence the
change in phase round a small closed curve must be small. Thus this change
cannot now be different by multiples of 2r for different wave functions, It
must have one definite value and may therefore be interpreted without

+

* H. Weyl, ‘ Z. Physik,' vol. 58, p. 330 (1929).

“t D. Iwanenko and V, Fock, ‘ C. R.,” vol, 188, P- 1470 (1929); V. Fock, * Z. Physik,’
vol. 57, p. 261 (1929). The more general Lind of non-integrability considered by these
authors does not seem to have any physical application,
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ambiguity in terms of the flux of the 6-vector E, H through the small cloged
curve, which flux must also be small.

There is an exceptional case, however, occurring when the wave function
vanishes, since then its phase does not have a meaning. As the wave function
is complex, its vanishing will require two conditions, so that in general the
pomtfwwgw We call such a line a nodal
line. If we now take a wave function having a nodal line passing through our
small closed curve, considerations of continuity will no longer enable ug to
infer that the change in Phase round the small closed curve must be small.

All we shall be able to say is that the change in phage will be ﬂw

where % is some integer, positive or negative. This integer will be a character.

istic of the nodal Tins. Tt3 sign will be associated with a direction encircling the

nodal line, which in turn may be associated with a direction along the nodal line.

The difference between the change in phase round the small closed curve and
the nearest 2nn must now be the same as the change in phase round the closed
curve for a wave function with no nodal lge through it. It is therefore this
difference that must be interpreted in terms of the flux of the 6-vector E, H
through the closed curve. For a cloged curve in three-dimensional Space, only
magnetic flux will come into play and hence we obtain for the change in phase
round the small closed curve

2rtn + efhe '[ (H, ds).

We can now treat a large closed curve by dividing it up into a network of
small closed curves lying in a surface whose boundary is the large closed curve,
The total change in phase round the large closed curve will equal the sum of zl!
the changes round the small closed curves and will therefore be

2T n + efkc j (H, dS), @)

the integration being taken over the surface and the summation over all
nodsl lines that pass through it, the proper sign being given to each term

in the sum. This expression consists of two parts, a part e/kc.J-(H, ds)
e —————— ————— ]

which must be the same for all wave functions and a part 2nEn which

-_'—":"_——-——._
may be different for different wave functons
i

* We are here considering, for simplicity in explanation, that the wave function is in
three dimensions, The Pasaage to four dimensions makes no essential change in the theory,
The nodal lines then become two-dimensional nodal surfaces, which can be encircled by
curves in the same way ag lines are in three dimensiongs,

F2
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Expression (8) applied to any surface is equal to the change in phase round
the boundary of the surface. Hence expression (8) applied to a closed surface
must vanish. It follows that n, summed for all nodal lines crossing a closed

surface, must be the same for all wave functions and must equal — e/2mhe
times the total magnetic flux crossing the surface,

If Zn does not vanish, some nodal lines must have end points inside the
closed surface, since a nodal line without such end point must cross the surface
twice (at least) and will contribute equal and opposite amounts to n at the
two points of crossing. The value of En for the closed surface will thus equal
the sum of the values of » for ail nodal lines having end points inside the
surface, This sum must be the same for all wave functions. Since this result
applies to any closed surface, it follows that the end points of ‘nodal lines must.

be the same for all wave functions. ~These end points are then poinis of singularily

in the electromagnetic field. The total flux of magnetic field crossing a sreall
—_— T

closed surface surrounding one of these points is
4y = 2nnkcle,

where # is the characteristic of the nodal line that ends there, or the sum of the
characteristics of all nodal lines ending there when there is more than one.
Thus at the end point there will be a magnetic pole of strength

¢ = dnhefe.

Our theory thus allows isolated magnetic poles, but the strength of such poles
must be quantised, the quantum y, being connected with the electronic charge
e by

hefepy = 2. (9)

This equation is to be compared with (1). The theory also requires a quanti-
sation of electric charge, since any charged particle moving in the field of a
pole of strength y, must have for its charge some integral multiple (positive

Or negative) of ¢, in order that wave functions describing the motion may
exist,

§ 4. Electron in Field of One-Quantum Pole.

The wave functions discussed in the preceding section, having nodal lines
ending on magnetic poles, are quite proper and amenable to analytic treatment
by methods parallel to the usual ones of quantum mechanics. It will perhaps
belp the reader to realise this if & simple example is discussed more explicitly,

Let us consider the motion of an electron in the magnetic field of a one-
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quantum pole when there is no electric field present. We take polar
co-ordinates r, 6, ¢ with the magnetic pole as origin. Every wave function
must now have s nodal line radiating out from the origin,

We express our wave fiinction ¢ in the form (3), where B is some non-
integrable phase having derivatives x that are connected with the known
electromagnetic field by equations (6). It will not, however, be possible to
obtain «’s satisfying these equations all round the magmetic > pole. There
must be some singular line radiating out from the pole alon which these
equémtiamg be chosen arbitrarily. We may
choose it to be the same as the nodal line for the wave function under con-
sideration, which would result in , being continuous. This choice, however,
would mean different «’s for different wave functions (the difference hetween
any two being, of course, the four-dimensiona) gradient of a scalar, except
on the singular lines). This would perhaps be inconvenient and is not really
necessary. We may express all our wave functions in the form (3) with the
same e, and M‘Imctions whose nodal Tifes-du-mot coincide
with the singular line for the «'s will correspond to ¢,’s having a certain kind.
of discontinuity on this SHMBI)?, a fﬁm ¥ just Catrelting
witﬁ_m e' here to give a continuous product,

The magnetic field H, lies along the radial direction and is of magnitude
Wo/r% which by (9) equals thcfer®.  Hence, from equations (7), curl « is radial
and of magnitude 1/22. It may now easily be verified that a solution of the
whole of equations (7) is

ko=0, Kk, =u=0, kg = 1/2r . tan 18, (10)
where «,, kg, K4 are the components of « referred to the polar co-ordinates.
This solution is valid at all points except along the line § = 7, where K4 becomes

infinite in such a way that J-(x, ds) round a small curve encircling this line

is 2r.  We may refer all our wave functions to this set of «'s.
Let us consider a stationary state of the electron with energy W. Written
non-relativistically, the wave equation is

— B2m . V2 = W,
It we apply the rule expressed by equation (5), we get as the wave equation

for ¢,
— B 2Im (VR V) 4 (T, 0) — o) gy = W (11)
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The values (10) for the «’s give \
= NS SN R ST A
G V)= (Vo) = g = 1 " 1055

a =kt = I:—ztan’ 16,

so that equation (11) becomes

Pl T 108 ) —W
2m{V+2rzsec§ﬁa¢ 2 tan 30 4y = Wiy,

We now suppose ¢, to be of the form of s function f of r only multiplied by a
function 8 of 6 and ¢ only, i.e.,
by =f{r) 8 (8¢4).

This requires

2 2d 2 2mW
(i -Ar—-20r a2)
Y 2 2
{sinLeé%smBa—e-{-a-nlz-—aé-%-[-gzsecziﬁ5;—}tan’i9}8=—AS, (13)

where 3 is a number,

From equation (12) it is evident that there can be no stable states for which
the electron is bound to the magnetic pole, beczuse the operator on the left-
hand side contains no constant with the dirnensions of a length, result
is what one would expect from ana.iogy with the classical theory. Equation
{13) determines the dependence of the wave function on angle. It may be
considered as a generalisation of the ordinary equation for spherical harmonies.

The lowest eigenvalue of (13) is A =1}, corresponding to which there are
two independent wave functions

Sa=cos 30, S, =sin 16 ¢%,

as may easily be verified by direct substitution. The nodal line for 8, is
8 =m, that for S, is 6 = 0. It should be observed that S, is continuous
everywhere, while 8, is discontinuous for 6 =, its phase changing by 2r
when one goes round a small curve encircling thetine 0 = Ths & just
what is necessary i order That both 8, 8iRt-S;, when multiplied by the ¢*
factor, may give continuous wave functions ¢. The two ¢'s that we get in
this way are both on the same footing and the difference in behaviour of 8,
and 8, ia due to our having chosen «’s with 2 singularity at 6 =n.

The general eigenvalue of (13) is A = n? + 2n+ 4. The general solution
of this wave equation has been worked out by I. Tamm.*

* Appearing probably in * Z. Physik.’
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§ 5. Conclusion.

Elementary classical theory allows us to formulate equations of motion for
an electron in the field produced by an arbitrary distribution of electric charges
and magnetic poles. If we wish to put the equations of motion in the
Hamiltonian form, however, we have to introduce the electromagnetic potentials,
and this is possible only when there are no isolated magnetic poles. Quantum
mechanics, ag it is usually established, ig derived from the Hamiltonian form

of the classical theory and therefore is applicable only when there are no
isolated magnetic poles.

The object, of the present paper is to show that quantum mechanies does not
really preclude the existence of isolated magnetic poles. On the contrary,
the present formalism of quantum mechanics, when developed nat;::ﬁy
witfout the imposition of arbitrary Testrichions, Teads inevitably to wave
equations whose only physical interpretation is the motion of an electron i the
field of a single pole. This new development requités no change whatever in
the formalism when expressed in terms of abstract symbols denoting states
and observables, but is merely & generalisation of the possibilities of representa-
tion of these abstract symbols by wave functions and matrices. Under these
circumstances one would be surprised if Nature had made no use of it.

The theory leads to a connection, namely, equation (9), between the quantum
of magnetic pole and the electronic charge. It is rather disappointing to find
this reciprocity between electricity and magnetism, instead of a purely
electronic quantum condition, such as (1). However, there appears to be no
possibility of modifying the theory, as it contains no arbitrary features, so
presumably the explanation of (1) will require some entirely new idea.

The theoretical reciprocity between electricity and magnetism ie perfect.
Instead of discussing the motion of an electron in the field of a fixed magnetic
pole, as we did in § 4, we could equally well consider the motion of a pole in
the field of fixed charge. This would require the introduction of the electro-
magnetic potentials B satisfying

E = cur] B, H=%aa—]3+gradBo,

%0 be used instead of the A’s in equations (6). The theory would now run quite
parallel and would lead to the same condition (9) connecting the smallest
pole with the smallest charge.

There remains to be discussed the question of why isolated magnetic poles
are not observed, The experimental result (1) shows that there must be some
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cause of dissimilarity between electricity and magnetism (possibly connected
with the cause of dissimilarity between electrons and protons) as the result of
which we have, not uy = e, but g, = 137/2 . e. This means that the attractive
force between two one-quantum poles of opposite sign is (137/2)* = 4692}
times that between electron and proton. This very large force may perhaps
account for why poles of opposite sign have never yet been separated.

Estimation of Metals in Solution by Means of their Spark Spectra.

v F. Twysmas, FInst.P., FRS. and € Sransrieip Hiocues., AR.CS,
PL.D.

(Received May 200 1951 —Revised August 5, 1931.)
[Prares 5. 6.

Introduction.

This paper records experiments undertaken to extend to liquids the accuracy
of quantitative analysis recently attained by the spectrography of alloys.
liow to produce from a solution a spectrum which shall truly represent the
solution, and what effect may be expected from the presence of other metals
than the one under determination, are among the questions dealt with, for
thev wust come into consideration in applying any method of quantitative

spectrography of solutions.

The Production of the Spark.

(@) The Sparking Vesscl for Liguids.—At the outset of the investigation it
hecame apparent that the older forms of sparking apparatus, used by Hartley,
Pollok and Leonard, and others, were unsuitable for gquantitative work, for
it was found that, owing to incrustation of the electrodes and to decomposition
of the solution around them, the spark soon became unrepresentative of the
bulk of the solution.

The apparatus finally devised embodies two principles which & number of
trials showed to be necessary ' —

(1) The spark takes place from liquid to liquid.
(i1} There i3 a steadv feed of fresh liquid, any scum being carried away.



