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THE VARIATIONAL METHOD

1. Principle of the method

a. A property of the ground state of a system

b. Generalization : the Rir= theorem

. A special case where the trial functions form a subspace
2. Application to a simple example

a. Exponential trial functions

b. Rational trial functions
3. Discussion

The perturbation theory studied in chapter XI is not the only general approximation
method applicable to conservative systems. We shall give a concise description
here of another of these methods, which also has numerous applications, especially
in atomic and molecular physics, nuclear physics, and solid state physics. First
of all, we shall indicate, in §1, the principle of the variational method. Then
we shall use the simple example of the one-dimensional harmonic oscillator to

bring out its principal features (§2), which we shall briefly discuss in §3. Comple-
ments F.. and G, ar\p!y the variational method to eimp!e models which enable
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us to understand the behavior of electrons in a solid and the chemical bond.

1. Principle of the method

Consider an arbitrary physical system whose Hamiltonian H is time-
independent. To simplify the notation, we shall assume that the entire spectrum of H
is discrete and non-degenerate :

H|o,>=E,|o,>:n=012, .. (1)

Although the Hamiltonian H is known, this is not necessarily the case for its
eigenvalues E, and the corresponding eigenstates | ¢, >. The variational method is,
of course, most useful in the cases in which we do not know how to diagonalize H
exactly.

a. A PROPERTY OF THE GROUND STATE OF A SYSTEM

Choose an arbitrary ket | > of the state space of the system. The mean
value of the Hamiltonian H in the state | ¢ ) is such that:

_YIH[Y
==y 25 2

(where E, is the smallest eigenvalue of H), equality occuring if and only if |y )
is an eigenvector of H with the eigenvalue F.
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THE VARIATIONAL METHOD

To prove inequality (2), we expand the ket | > on the basis of eigenstates
of H:

W > =3¢, |0, (3)

n

We then have:
CYH|Y > = |e)* E, = Eg Y o 4)
with, of course :

Yl =2l (5)
n
which proves (2). For inequality (4) to become an equality, it is necessary and
sufficient that all the coefficients ¢, be zero, with the exception of ¢4 ; | ¥ ) is then
an eigenvector of H with the eigenvalue E,.
This property 1s the basis for a method of approximate determination of E,,.
We choose (in theory, arbitrarily, but in fact, by using physical criteria) a family
of kets | ¥(«x))> which depend on a certain number of parameters which we
symbolize by a. We calculate the mean value { H >(a) of the Hamiltonian H in
these states, and we minimize { H »(a) with respect to the parameters x. The
minimali vaiue so obtained constitutes an approximation of the ground state E|,
of the system. The kets | y(a) > are called rrial kets, and the method itself. the
variational method.

COMMENT:

The preceding proof can easily be generalized to cases in which the
spectrum of H is degenerate or includes a continuous part.

b. GENERALIZATION: THE RITZ THEOREM

We shall show that, more generally, the mean value of the Hamiltonian H is
stationary in the neighborhood of its discrete eigenvalues.
Consider the mean value of H in the state |y >:

(U H]w>
CHY =T (©)

as a functional of the state vector | ¥ », and calculate its increment §{ H » when | § )
becomes | y > + | dy >, where | 8y ) is assumed to be infinitely small. To do so,
it is useful to write (6) in the form:

CHY YY) =<Cy|H|y> (7)
and to differentiate both sides of this relation:
CY Y DoCHY + CHY[CY oy > + oy |y )] (8)

=Y |H|o) + oY |H|y)
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that is, since ¢ H > is a number:

Cy vy oCHS
=Y |[H = CHY]|[oy > + (oY |[[H—<CHY|y> 09

The mean value { H ) will be stationary if:
0(HY =0 (10)

which, according to (9), means that:

CY|[H—CHYY |0y + oY [[H—-<CHY|Y)>=0 (11)
We set :

o> =[H - <CHX]|Y> (12)
Relation (11) can then be written simply :

Coloy)> +(y|e>=0 (13)

This last relation must be satisfied for any infinitesimal ket | oy >. In particular,
if we choose:

|0y > =04]9) (14)

2{p|le>dr=0 (15)

The norm of the ket | @ » is therefore zero, and | ¢ > must consequently be zero.
With definition (12) taken into account, this means that:

Hly>=<{H>|y> (16)

N\ 142

the mean value { H ) is stationary if and only if the state vector | ¥ >
responds is an eigenvector of H, and the stationary values of { H )
1
1
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The variational method can therefore be generalized and applied to the
approximate determination of the eigenvalues of the Hamiltonian H. If the
function < H >(x) obtained from the trial kets l Y(x) > has several extrema, they give
the approximate values of some of its energies E, (¢/. exercise 10 of comple-
ment Hy,).

c. A SPECIAL CASE WHERE THE TRIAL FUNCTIONS FORM A SUBSPACE

Assume that we choose for the trial kets the set of kets belonging to a vector
subspace # of &. In this case, the variational method reduces to the resolution
of the eigenvalue equation of the Hamiltonian H inside %, and no longer in all of &.

To see this, we simply apply the argument of § 1-b, limiting it to the kets | y >
of the subspace #. The maxima and minima of { H ), characterized by 6 H ) = 0,
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are obtained when | ¥ ) is an eigenvector of H in #. The corresponding eigenvalues
constitute the variational method approximation for the true eigenvalues of H in &.

We stress the fact that the restriction of the eigenvalue equation of H to a
subspace % of the state space & can considerably simplify its solution. However,
if % is badly chosen, it can also yield results which are rather far from the true
eigenvalues and eigenvectors of H in & (¢f. § 3). The subspace % must therefore be
chosen so as to simplify the problem enough to make it soluble, without too
greatly altering the physical reality. In certain cases, it is possible to reduce the
study of a complex system to that of a two-level system (cf. chap. IV), or at least,
to that of a system of a limited number of levels. Another important example of this
procedure i1s the method of the linear combination of atomic orbitals, widely used in
molecular ph‘ysics This method consists essemiauy \Lj bUlIlplClIlCI]L Ux” of the
determination of the wave functions of electrons in a molecule in the form of
linear combinations of eigenfunctions associated with the various atoms which
constitute the molecule, treated as if they were isolated. It therefore limits the
search for the molecular states to a subspace chosen using physical criteria.
Similarly, in complement Fy,, we shall choose as a trial wave function for an
electron in a solid a linear combination of atomic orbitals relative to the various
ions which constitute this solid.

COMMENT:

Note that first-order perturbation theory fits into this special case of the
variational method: % is then an eigensubspace of the unperturbed
Hamiltonian H,,.

2. Application to a simple example

To illustrate the discussion of §1 and to give an idea of the validity of the

approximations obtained with the help of the variational method, we shall apply
this method t the one-dimensional harmonic oscillator, whose eigenvalues and
eigenstates we know (cf. chap. V). We shall consider the Hamiltonian:
n? d?
H=—-—— +-mo’x’ (17)
2m dx 2

and we shall solve its eigenvalue equation approximately by variational calculations.

a. EXPONENTIAL TRIAL FUNCTIONS

Since the Hamiltonian (17) is even, it can easily be shown that its ground state
is necessarily represented by an even wave function. To determine the charac-
teristics of this ground state, we shall therefore choose even trial functions. We
take, for example, the one-parameter family :

W,(x) = e ; >0 (18)
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The square of the norm of the ket |y, > is equal to:

vy = | dxeme (19)
and we find :
K d? 1
H e | — — — mwx? | e
ChlBfn = [ axes [ 2 o]
[II o + g mw’ —1 ( dx e~ 2%* (20)
|~ “1J-»
so that:
(HYe) = hloz —FlmwZl 21
" 2m 8 o (21)

The derivative of the function { H >(x) goes to zero for:
o= 0y =5— (22)
and we then have :
1
CH (o) = 5T (23)

The minimum value of ( H >(«) is therefore exactly equal to the energy of the
ground state of the harmonic oscillator. This result is due to the simplicity of the
problem that we are studying: the wave function of the ground state happens to
be precisely one of the functions of the trial family (18). the one which corresponds
to value (22) of the parameter «. The variational method, in this case, gives the
exact solution of the problem (this illustrates the theorem proven in §1-a).
.....................

the Hamnltoman (l7) we should choose tnal functlons whlch are orthogonal to
the wave function of the ground state. This follows {rom the discussion of §1-a,
which shows that { H ) has a lower bound of E,, and no longer of E,, if the
coefficient ¢, is zero. We therefore choose the trial family of odd functions:

Yalx) = x e’ (24)
In this case:

AL Jf Cdx e (25)

= o0

and:

hz 1 2 3 o 2 - 2ax?
<l//a’H|l//a>—[mX3ot +§mw ><4—an dx x* e (26)

X
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which yields :

3n? 3 , 1
H () =35 +§mw > (27)

This function, for the same value o, as above [formula (22)], presents a minimum
equal to:

(S RO

CHY(0g) =5 hw (28)

Here again, we find exactly the energy E, and the associated eigenstate because the
trial family includes the correct wave function.

b. RATIONAL WAVE FUNCTIONS

The calculations of §2-a enabled us to familiarize ourselves with the variational
method, but they do not really allow us to judge its effectiveness as a method
of approximation, since the families chosen always included the exact wave
function. Therefore. we shall now choose trial functions of a totally different type,
for example*:

V(X)) = 5—— ; a>0 (29)
x° +a

A simple calculation then yields:
| (" dx n )
< l//a '//a > = J S = (30

L (P a 2a Ja
and, finally:

1o R

<H>(a)=z';z +§mwa (31)

The minimum value of this function is obtained for:
1 h s
a=dy=—=— (32)

\/ i me

and is equal to:

( H a,) = 715 ha (33)

This minimum value is therefore equal to \/ 2 times the exact ground state
energy hw;2. To measure the error committed, we can calculate the ratio of
{ H >(a,) — hw/2 to the energy quantum hw:

o

I ~
CH H(ag) — 57"” J2 -1 Ay
= ~ 209, (34)

ho 2

* Qur choice here is dictated by the fact that we want the necessary integrals to be analytically
calculable. Of course. in most real cases, one resorts to numerical integration.
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3. Discussion

The example of §2-b shows that it is easy to obtain the ground state energy
of a system, without significant error, starting with arbitrarily chosen trial kets.
This is one of the principal advantages of the variational method. Since the exact
eigenvalue is a minimum of the mean value { H », it is not surprising that { H > does
not vary very much near this minimum. :

On the other hand, as the same reasoning shows, the “approximate” state
can be rather different from the true eigenstate. Thus, in the example of §2-b, the
wave function 1/(x* + a,) [where a, is given by formula (32)] decreases too
rapidly for small values of x and much too slowly when x becomes large. Table |
gives quantitative support for this qualitative assertion. It gives, for various values

e . al

Y I S T PRSP PN FU P SRS BN IR Y . S .
Ol X, UIC V4lucs Ol e €xdcCl 1norimaliiZed cigenyuncuon .
— 1/4 —:l()x2
@o(x) = (2ao/m)'"* e

[where o, was defined in (22)] and of the approximate normalized eigenfunction:

. [~ [~
/2 2 (an)** 2 1
|~ (%)3/4%0(3‘) = /i_'———‘(z o) = K_ (2\/50‘0)1/4 (35)
N7 Nrax®+a, N~ 1 + 2/ 20a,x?
o (2) o kv
° \n) \/” 1+ 2/ 20x?
0 0.893 1.034
12 0.696 0.605
1 0.329 0.270
3/2 0.094 0.140
2 0.016 0.083
5 0.002 0.055
3 0.000 1 0.039

TABLE |

It is therefore necessary to be very careful when physical properties other
than the energy of the system are calculated using the approximate state obtained
from the variational method. The validity of the result obtained varies enormously
depending on the physical quantity under consideration. In the particular problem
which we are studying here, we find, for example, that the approximate mean value
of the operator X2* is not very different from the exact value:

Vo | X2 (o> _ 1 R
AL %6)

* The mean value of X is automatically zero, as is correct since we have chosen even trial functions.
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which is to be compared with %/2mw. On the other hand, the mean value of X* is
infinite for the wave function (35), while it is, of course, finite for the real wave
function. More generally, table I shows that the approximation will be very poor
for all properties which depend strongly on the behavior of the wave function
for x 2 -/\/ g

The drawback we have just mentioned is all the more serious as it is very
difficult, if not impossible, to evaluate the error in a variational calculation if we
do not know the exact solution of the problem (and, of course, if we use the
variational method, it is because we do not know this exact solution).

The variational method is therefore a very flexible approximation method,
which can be adapted to very diverse situations and which gives great scope to
physical intuition in the choice of trial kets. It gives good values for the energy

rathar ancils it th annravimata ctaota vantar mavy nracant cartain camnlatal
1atiivi \-aDll_y' OuUt tncé apleAuuut\. state VeCiors Hiay piooviic cerain \—Ulllpl\-l.\al:y'

unpredictable erroneous features, and we cannot check these errors. This method is
particularly valuable when physical arguments give us an idea of the qualitative
or semi-quantitative form of the solutions.

References and suggestions for further reading:

The Hartree-Fock method, often used in physics, is an application of the varia-
tional method. See references of chapter XI.

Tha variational mathad ic of fundamental imnortance in molecular nhvcice
11v Yyallilaliviial 1uviiivua 10 v JTuiivQliIvIIIAl IIHPUVILAIIVY 111 avivwuwiar PriJ aiva
See references of complement Gy;.
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For a simple preseniaiion of the use of variational principles in physics,

see Feynman II (7.2), chap. 19.
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