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SUPPLEMENTARY NOTES ON THE
CONNECTION FORMULAE FOR THE
SEMICLASSICAL APPROXIMATION
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The WKB “connection formulas” allow one to continue semiclassical solu-
tions from an allowed to a forbidden region and vice versa. However these
formulas are subtle and must be used with care. The purpose of these notes
is to explain how to use the them and why it is necessary to be careful.
Note that we are not deriving the connection formulas here. The deriva-
tion is either long and dull (e.g., Griffiths or Merzbacher) or short, elegant
and obscure (e.g., Landau and Lifschitz). In any case, the proper use of
the connection formulas is quite independent of how they are derived. The
semiclassical approximation is valid whenever the rate of change of the de

Broglie wavelength is small,
dX

dx

where X = Ii/p(z) and p(x) = \/2m(E — V(x)). Eq. (1) can be satisfied in a
classically allowed region, where F > V(x), and X is real, or in a classically
forbidden region where E < V(z), and X is imaginary. As derived in class
the wavefunctions in the semiclassical limit are given by:

<1 (1)

P(r) ey pl(x) exp [%/ dx’p(x')} +c_ pl(x) exp {—%/ dx’p(x’)}
(2a)
in the classically allowed region, and
Y(r) 2 d, ml(x) exp {%/ d$/I€<I/):| + d_ﬁ exp {—%/ dl’/li(l‘/):|
(2b)

in the forbidden region, where r(z) = /2m(V(z) — E). Notice that all
the integrals have been written as indefinite integrals. This is because a
change in the lower limit amounts to a change in the value of the constants
cy+ and d4. In specific applications the lower limits and the constants are



chosen to suit the problem. To make use of the semiclassical method it is
almost always necessary to continue the wavefunction from the allowed region
to a forbidden region, or vice versa. The trouble is that these regions are
separated by a classical turning point, xq, where E' = V(x), so p(z¢) = 0 and
dX/dx — oo. So the semiclassical approximation breaks down at a classical
turning point. The question is, then, how does one continue a solution from
an allowed region through a classical turning point into a forbidden region, or
vice versa? It should be possible because we are talking about the solution to
a second order differential equation (the Schrodinger equation). Once one has
specified two constants of integration, the solution is completely determined,
so specifying the solution in one region should fix it in the forbidden region.
In fact, this is not quite true, and that’s the subtlety of the “Connection
Formulas”.

1 What are the Connection Formulas?

First, let’s summarize the formulas and their domain of applicability. The
formulas depend on whether the classically forbidden region lies to the left or
right of the classically allowed region. To be complete we give the formulas
for both cases. Figure 1 shows the situation: in (a) the forbidden region is
on the right; in (b) it is on the left.
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x=a x=b Figure 1



I. Forbidden region to the right.

— If the wavefunction is known to be exponentially falling in the
forbidden region, then it’s phase and amplitude are known in the
allowed region:

i(z) exp {—% / x%(x')dm'} N ;(x) cos [% / ’ p(x’)da:'—%j)

— A wavefunction 90° out of phase in the allowed region continues
into a growing exponential in the forbidden region as follows:

pl(x) cos {% /: p(x")dx' + ﬂ = % exp {% /j /‘é(xl)dwl}
(4)

I1. Forbidden region to the left.

— If the wavefunction is known to be exponentially falling in the
forbidden region, then it’s phase and amplitude are known in the
allowed region:

—ew {—% / b/{(x')dx’} N %cos [% /b (')’ — %j)

— A wavefunction 90° out of phase in the allowed region continues
into a growing exponential in the forbidden region as follows:

;(x) cos [% /bxp(x')d:cl + ﬂ = ﬁexp [% /mbﬁ(m/)dxll
(6)

2 Why are the Connection Formulas not equalities?

The subtlety is that these relations are not equations. The identity holds
only in the direction shown by the arrow (=) but not the other way. To
see this consider a specific example: Suppose we have found a wavefunction
which is growing exponentially in a forbidden region to the right:

V() ~ :(:C) exp [% / ' H(x')dx’] | (7)
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Why can’t we use eq. (4) to learn that the wavefunction is of the form
——cos [+ [*p(2/)dz’ + %] on the left? The reason has to do with the

\/p(x)

accuracy of the WKB expression for ¢(z) in the forbidden region. We only
know about the exponentially growing term in eq. (7). ¥ (x) could have
an exponentially falling term, proportional to exp[—% ; k(z")d2'], and we
would not know about it because it is beyond the accuracy of the WKB
approximation. The relative weight of the exponentially growing and falling
solutions is determined by the phase added to the argument of the cosine.
According to eq. (3) if the phase is —m/4 there is no exponentially growing
solution in the forbidden region. For any other choice of phase there is an
exponentially growing solution which overwhelms the exponentially falling
one. So observing an exponential growth in the forbidden region cannot tell
us anything about the phase of the cosine in allowed region, except that the
added phase is not equal to —%. Seeing an exponentially falling solution in
the forbidden region uniquely fixes the phase in the allowed region to the
value for which there is no exponentially growing solution. Hence eq. (3).
On the other hand, having any other phase in the classically allowed region
will give an exponentially growing solution in the classically forbidden re-
gion. For simplicity, we choose the solution 90° out of phase and quote the
amplitude of the growing solution. Hence eq. (4). The other two connection
formulas just switch the allowed and forbidden regions around.

3 An Example

A worked example will help show how the Connection Formulas are to be
applied. Consider a particle trapped between the origin at * = 0 and a
high potential V(x). Figure 2 gives an illustration. For energy E, the clas-
sical turning point is at @ = a(F). a is the point where £ = V(a). The
semiclassical solution which vanishes at the origin is



V(x)

Figure 2

o) = sin [% /0 ' p(x')dx'] | (8)

This form is valid for x < a. What do we do as x approaches the turning
point at x = a? We rewrite the sin[...] as the a linear combination of the
two cosines for which we have connection information:

o) = sin |3 [ oo )

1 [ 1 [¢
= sin A cos [%/x p(z")dz' — %} + cos A cos |:ﬁ/x p(x’)dx’ + g]

where

A= %/Oap(x)dx - % (10)

This much is just application of trig identities. If the coefficient of COS[% f; p(2")dx'+

7] is not zero, then the wave function continues into a growing exponential
for x > a according to eq. (4). The only thing we can say for certain is that

¥ (x) has an exponentially growing term in the forbidden region:

1 1 [
~ A—— - "da'| . 11
W(x) ~ cos K(I)exp [h/a K(z") x} (11)
¥ (x) would in general also contain exponentially falling terms in the forbid-
den region, but we don’t have the accuracy to compute them. Tiny correc-
tions to the exponentially growing term, which we did not keep track of in
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our WKB approximation will be much larger than the exponentially falling
term. However, if cos A = 0, then there is no exponentially growing term in
the forbidden region. Thus, if we know that ¢ (z) falls exponentially in the
forbidden region cos A must be zero. Since a bound state wavefunction must
fall exponentially in the forbidden region we learn that the WKB condition
for a bound state is cos A = 0, or

/0 Cp(@)de = (n+ ) (12)

which is the Bohr-Sommerfeld Quantization condition when there is a hard
wall on one side. The problem set contains other problems which require
careful use of the Connection Formulas.

4 Deriving the Connection Formulae

This section (©) Krishna Rajagopal, 2004

We will not be deriving the connection formulae in lecture. The straight-
forward derivation is given in Griffiths, and I urge you to read it. There
is a well-known “clever” derivation devised by Landau and Lifschitz and
presented in their text “Quantum Mechanics, the Non-Relativistic Theory”.
(It’s in section 47 in my edition.) As always with Landau and Lifschitz, the
presentation is as compact as possible. (Prof. Jaffe calls it “short, elegant
and obscure.”) What I'll do here is to walk you through their derivation,
adding explanation with the goal of removing obscurity. I think you’ll still
find it elegant, although it will no longer be as short. I will also use this
derivation to explain the circumstances in which the use of the connection
formulae to handle turning points is valid, and the circumstances in which
it breaks down, in a more quantitative way than I did in lecture. Let us
consider the case depicted in the left panel of Fig. 1, with a turning point at
x = a with the allowed region at x < a and the classically forbidden region
at x > a. We know that in the forbidden region

b(z) = % exp {—% / ’ ,{@')dm'} for > a (13)

and in the allowed region

W(z) = exp {% / ’ dz’p($')}+\/§mexp [—% / adx’p(x')} for;vlja.
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Our task is to relate ¢, and c_ to d, and we expect to find the relation
described by the connection formula (3). I'll take you through this derivation,
and leave deriving the other three connection formulae to you. In the vicinity
of the turning point a, the potential is approximately linear and we can write

av
V—FE~b(x—a) Wherebzd—

. >0. (15)

r=a

This linearized potential is a good description for |z — a| < L, where L is
the “length scale over which V' curves”. The semiclassical forms for the wave
function, (13) and (14), are not valid too close to a. For example, (13) is
valid where

d ©h

dx k(z)
and we must ask whether there are values of (z — a) that are simultaneously
large enough that (16) is valid, but not so large that (15) breaks down. If

there is a range of (z — a) in which both (16) and (15) are valid, then within
this domain (16) becomes

> 1 (16)

d h
dz \/2mb(z — a)

= f L <1
~ V8mb (x — a)3/? '

We can therefore conclude that as long as

L% >

, 17
mb (17)

there is a region where (16) is valid, meaning that (13) describes the wave
function, and where (15) describes the potential. The same condition (17)
implies that there is a range of a — x, in the allowed region in which a —
x is big enough that (14) is a valid description of the wave function and
small enough that (15) still describes the potential. The condition (17) must
be satisfied by the potential near its turning points in order to ensure the
validity of the analysis we are pursuing (with semiclassical wave functions
far away from turning points and connection formulae prescribing how they
are connected “across” the turning points.) One way of reading (17) is that
it is always satisfied in the 2 — 0 limit, and indeed this is why the method is
called “semiclassical”. Perhaps a better way to read the condition, though,
is to leave N fixed—it is after all a constant of nature—and view (17) as
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the statement of how smooth the potential must be near its turning points.
Henceforth, we assume that (17) is satisfied. Within the domain of z — a
where both (15) and (16) hold, the wave function is given by

o) = o | [ Voo |

2mb(z — a

d . [ 2
2mb(z — a)]V* 3h

2mb (x — a)3/2} . (18)

Now, we want to “analytically continue” this expression from z —a > 0 to
x—a < 0. The trick is to consider (z — a) a complex variable, which we shall
write as

(2 —a) = pexpio .

and to start with ¢ = 0 and p in the range such that all our approximations
are valid and then to continuously change ¢ from 0 to 7, all the while keeping
p fixed. In this way, we end at a point in the allowed region (with x —a < 0)
where both (15) and (16) hold. Lets see what happens to the wave function
upon performing this procedure. First, we rewrite the wave function as

d 2 3i¢
= G [T ey
4

which, for ¢ = 0, is what we had before. For ¢ = 7w, namely © — a < 0, the
wave function becomes

7

() = 34 exp {—l—izv 2mb p3/2} : (20)
(2mbp)™" " exp T 3h
So, this is the wave function in the allowed region that we obtain by starting
from the wave function in the forbidden region and analytically continuing.
Note that the turning point is at p = 0, and we never went near it. By
turning x — a into a complex variable, we were able to start with z —a > 0,
end with  — a < 0, and never go near x — a = 0. We must now compare
(20) to the form of the wave function we were expecting to get in the allowed
region, namely (14). Using (15)—and, note that we are in the region where
this is valid—we can rewrite the wave function in the allowed region (14) as



follows:

v = [zmbmci T {% / * me(a”/)]

C+ 2 3/2}
= exp |+t—v2mb(a —x
[2mb(a — z)]*/* [ 3h ( )
c_ 2
+ exp [—z’— 2mb(a — x 3/2}
[2mb(a — x)]Y* 3h (@ =2)
C+ 2 o 3
= ————exp |+i—V2mb }
[2mbp]/* { 3h ’
c_ 2
+——F—exp {—i—v 2mb 3/2} . 21
[2mbp]1/4 3h ’ 21
We now see that if we choose
d
Cy = T (22>
exp 1

then the wave function (20) that we obtained by analytically continuing
the forbidden-region wave function to the allowed region is the same as the
“cy term” in (21)! This looks good, but what has happened to the c_ term???
Let’s try to figure out why we found the ¢, term, but not the c¢_ term. To
do this, we start with (21), including both the ¢, and c¢_ terms, and try to
analytically continue it in the opposite direction to what we did before, back
to the forbidden region. We do the analytical continuation by changing ¢
from 7 to 0. Note that the imaginary part of (x — a) is positive during the
continuation. You can easily check that if you start with (21) and perform
this procedure, as you begin the continuation into the complex plane (i.e. as
you start reducing ¢ from 7) the magnitude of the c_ term becomes expo-
nentially small compared to the magnitude of the ¢, term. As we discussed
in lecture, the semiclassical approximation entails dropping such exponen-
tially small terms. So, if we start with (21) and “continue backward”, we
lose the c_ term and the c; term turns into the correct wave function in the
forbidden region once ¢ is back to 0. Analogously, when we started with the
forbidden-region wave function and “continued forward”, we only obtained
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the ¢, term. Now that we understand why we lost the c¢_ term, how can we
find it?? Simple. Start with the forbidden-region wave function (19) again.
This time, change ¢ from 0 to —7w. As before, we start in the forbidden re-
gion and end in the allowed region. This time, though, the imaginary part of
x — a is negative during the continuation. This means that near ¢ = —m, the
magnitude of the c, term is exponentially smaller than that of the c_ term,
so we expect this time to “lose” the ¢y term. And, lo and behold, the wave
function in the allowed region that we obtain by starting from the forbidden
region and continuing ¢ from 0 to —7 is

_ d _3 3/2
) = ot o [-igVEme?| @)

which is not the same as (20). Instead, it is precisely the c_ term in (21), as

long as we choose
d

C. = ——F——— . 24

o () .

By doing the analytic continuation from ¢ = 0 to ¢ = —m, we have lost

the ¢, term and obtained the ¢_ term! By performing these two different

analytic continuations, we are able to start from the wave function in the

forbidden region and determine the complete wave function in the allowed

region. What we find is that in the allowed region, the wave function is given

by (21) or, equivalently, (14) with ¢, and c_ specified by (22) and (24). That
is, in the allowed region

b(z) = i‘(ix) cos [% / ’ p(x')dx'—ﬂ (25)

which is the connection formula (3) we set out to prove. Elegant, n’est-ce
pas?
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