
Quantum Physics III (8.06) Spring 2006
Assignment 10

May 3, 2006 Due FRIDAY May 12, 2006

• Please remember to put your name and section time at the top of your paper.

• Prof. Liu will give a review session from 2-3:30pm on Friday May 19 in 4-370.

• Additional office hours by Prof. Levitov, Ilya Sigalov and Prof. Liu will soon
be announced.

• Your FINAL EXAM is MONDAY MAY 22, 1:30PM-4:30PM, in JOHNSON
ICE RINK.

Readings

• Griffiths Chapter 11

• Ohanian Chapter 11

• Prof. Jaffe’s notes on scattering

Problem Set 10 and Study Guide
The first four problems are your problem set, due on Friday May 12. The last

seven problems will not be graded, but should help you to study for the final exam.
Solutions to all problems will be provided.

1. Scattering from a Reflectionless Potential (10 points)

Consider a particle of mass m moving in one dimension under the influence of
the potential

V (x) = −~
2a2

m
sech2(ax) .

(a) This potential has a normalizable bound state with wave function ψ0(x) ∝
sech(ax). What is its energy?

(b) Show that

ψ(x) =

(
k

a
+ itanh(ax)

)
exp ikx

is a solution to the same problem with energy E = ~2k2/2m.
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(c) Now consider scattering of a particle with energy E from V (x). Explain
(should be brief) that the solution of part (b) satisfies the boundary con-
ditions appropriate for this scattering problem, with the particle incident
from the left. Use this solution to show that the reflection coefficient is
zero, and to determine the transmission coefficient T (E). Show |T (E)| = 1.

(d) Show that T (E) has a pole at the energy of the bound state.

2. Simple Properties of Cross Sections (15 points)

Scattering in three dimensions introduces some new concepts: cross sections,
scattering amplitudes, solid angle, to name a few. This problem should help
you understand the basics.

Consider a scattering wave function in three dimensions parametrized by a
function f(θ, φ):

ψ(r, θ, φ) = eikz +
f(θ, φ)

r
eikr .

The first term describes an incident plane wave. The second term describes
the scattered flux, scattered off some potential localized in the vicinity of
r = 0. This scattering wave function is only valid at large r. f(θ, φ), which
parametrizes the scattered flux, is called the scattering amplitude.

The probability flux for the Schrödinger equation is given by

~S =
~

2mi

(
ψ∗~∇ψ − ψ~∇ψ∗

)
.

(a) Compute the incident flux. Calculate the scattered flux for θ 6= 0. [Note:
when calculating the scattered flux, keep only the dominant term at large
r.]

(b) Define the cross section per unit solid angle by

dσ

dΩ
dΩ = lim

r→∞

~Sscattered · r̂
|Sincident| dA ,

where Sincident is the incident flux, Sscattered is the scattered flux, and dA is
a small element of area, dA = r2dΩ, on a distant sphere.

Show that
dσ

dΩ
= |f(θ, φ)|2 .

[Note that Griffiths denotes dσ/dΩ by the symbol D(θ, φ). This notation
is unconventional, but it is helpful in reminding one what dσ/dΩ depends
on.]
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(c) From considerations of flux conservation, derive the optical theorem:

σelastic ≡
∫

dΩ|f(θ, φ)|2 =
4π

k
Imf(θ = 0) .

Hint: Prof. Jaffe’s notes are helpful.

3. Born Approximation for Scattering From Yukawa and Coulomb Po-
tentials, plus a Practical Example of the Latter (15 points)

Make sure you are aware of Griffiths’ Examples 11.5 and 11.6 on page 415 as
you do this problem. He has done some of the work for you.

Consider a Yukawa potential

V (r) = β
exp(−µr)

r

where β and µ are constants.

(a) Evaluate the scattering amplitude, the differential cross section dσ/dΩ,
and the total cross section in the first Born approximation. Express your
answer for the total cross section as a function of the energy E.

(b) Take β = Q1Q2 and µ = 0, and show that the differential cross section you
obtain for scattering off a Coulomb potential is the same as the classical
Rutherford result. Use this differential cross section in part (d) below.

(c) Differential cross sections are what physicists actually use to calculate the
rate at which scattered particles will enter their detectors. The number of
particles scattered into solid angle dΩ per second by a single scatterer is
given by

d2N

dtdΩ
=

dσ

dΩ
× d2N

dtdA

where d2N/dtdA is the incident flux in units of particles per second per
unit area, ie per unit cross sectional area transverse to the beam. Consider
a uniform beam of dN/dt particles per second with a cross sectional area
A. This beam strikes a target with density n (n is the number of scattering
sites per unit volume) and thickness t.

Give an expression for the number of particles scattered into a detector
with angular size dΩ per unit time.

Show that your result is independent of the cross sectional area of the
beam even if the beam is not uniform across this area. [Note that this
is important, because it is typically easy for an experimenter to measure
dN/dt but hard for her to measure either A or the uniformity of the beam
across the cross sectional area.]
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(d) Consider a beam of alpha particles (Q1 = 2e) with kinetic energy 8 MeV
scattering from a gold foil. Suppose that the beam corresponds to a current
of 1 nA. [It is conventional to use MKS units for beam currents. 1 nA is
10−9 Amperes, meaning 10−9 Coulombs of charge per second. Each alpha
particle has charge 2e, where e = 1.6×10−19 Coulombs.] Suppose the gold
foil is 1 micron thick. You may assume the alpha particles scatter only
off nuclei, not off electrons. You may also assume that each alpha particle
scatters only once. You will need to look up the density of gold and the
nuclear charge of gold (Q2). How many alpha particles per second do you
expect to be scattered into a detector which occupies a cone of angular
extent (dθ = 10−2 radians, dφ = 10−2 radians) centered at θ = π/2?

(e) Suppose you now move the detector around (keeping it at the same dis-
tance from the target and thus keeping the solid angle subtended by the
detector the same.) How does the number of particles per second seen in
the detector depend on the angular location of the detector, θ? What is
the number of particles per second seen in the detector for θ = 10◦, θ = 45◦

θ = 135◦, θ = 170◦?

4. The Size of Nuclei (10 points)

In lecture we derived an expression for the scattering amplitude in the Born
approximation for the elastic scattering of a particle of mass m and charge -|e|
from a charge distribution |e|ρ(~r):

f(~q) =
2me2

~2q2

∫
d3re−i~q·~rρ(~r) .

Recall that ~q = ~k′ − ~k is the momentum transferred to the scattered particle
in the collision. For elastic scattering, q ≡ |~q| = 2|~k| sin(θ/2). If the electrons
used in a scattering experiment are relativistic, k ' E/c.

(a) The charge distribution of a nucleus is not localized at a mathematical
point. f is therefore not exactly that for Rutherford scattering. The
charge distribution is roughly constant out to a radius R and then drops
rapidly to zero. A simple model is:

ρ(~r) =
3Z

4πR3
for r ≤ R

and ρ = 0 for r > R. Calculate the cross section for electron scattering
from such a nucleus as a function of q2.

(b) The ratio of the actual amplitude for scattering from a point nucleus is
called the “form factor”. Sketch the form factor as a function of qR.
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The form factor tells us about the “shape” of the charge distribution in a
nucleus, and thus tells us how the protons within a nucleus are arranged.
In our simple model, the form factor tells us the value of R. If nuclei
had precisely the shape we have used in our simple model, experimenters
would measure a form factor with precisely the functional form you have
calculated, and would then do a fit to obtain a measurement of R, the
radius of the nucleus.

(c) For relativistic electrons with energy E, if you are able to count the scat-
tered electrons at a variety of angles, ranging from θ close to zero to θ close
to π, what range of q can you access? If you use electrons with E ¿ 1/R,
show that you will not be able to make an accurate determination of R.
You will not be able to “resolve” the fact that scattering off a nucleus
differs from Rutherford scattering.

The values of R for nuclei are around (2−7)×10−13 cm. Roughly how large
an electron energy do you need in order to do a reasonable measurement
of R?

First aside: The above problem uses a simple model, but it is not all that far
from the real thing.

Second aside: The next step in the process of unveiling the structure of matter
on smaller and smaller length scales was the discovery that the protons and
neutrons that make up a nucleus have substructure. Electron beams with en-
ergies appropriate for studying nuclear structure (ie the distribution of protons
within a nucleus, which you’ve been analyzing in this problem) cannot resolve
the substructure of a proton. Thus, the discovery of the quark structure of the
proton had to wait until the construction of the SLAC linear accelerator, which
began accelerating electrons to 21 GeV in the late 1960’s. In 1967, Jerome
Friedman, Henry Kendall and Richard Taylor began the series of experiments
in which quarks were discovered. When an 21 GeV electron scatters at large
angles off a quark in a proton, the proton does not remain intact. This means
that the description of these experiments requires an understanding of inelastic
scattering. In an inelastic collision, the scattered electron’s momentum changes
by ~q, and its energy also changes.
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THE PROBLEMS BELOW SHOULD NOT BE HANDED IN. THEY
WILL NOT BE GRADED. THEY ARE INTENDED AS A STUDY
GUIDE TO HELP YOU UNDERSTAND SCATTERING THEORY
AND THE GROVER ALGORITHM. SOLUTIONS WILL BE PRO-
VIDED.

5. The Born Approximation in One Dimension (15 points)

(a) Do Griffiths Problem 11.16.

[You need not derive the Green’s function as Griffiths does in his text.
Rather, it is sufficient for you to take the answer Griffiths gives, and show
that it is indeed the integral equation for the one dimensional Schrödinger
equation.]

(b) Do Griffiths Problem 11.17.

(c) Do Griffiths Problem 11.18.

6. Scattering from a Small Crystal (8 points)

We want to investigate the structure of a crystal by scattering particles from it.
The particle sees the potential

V (~x) =
∑

i

v(~x− ~Xi)

where the ~Xi are the position vectors of the scattering atoms and v(~x) is the
scattering potential of a single atom. Assume that v is weak enough that we
can use the Born approximation for the whole crystal, ie for V .

(a) Express the differential cross section as the product of two factors, one of
which depends on v and the other on the structure of the crystal, ie the
set of points ~Xi. Both factors will depend on the momentum transfer ~q.

(b) Briefly, compare to whatever you know about Bragg scattering.

7. Partial Waves (10 points)

Suppose the scattering amplitude for a certain reaction is given by

f(θ) =
1

k

(
Γk

k0 − k − ikΓ
+ 3e2iβk3

sin 2βk3 cos θ

)
(1)

where Γ, k0, and β are constants characteristic of the potential which produces
the scattering. Of course k =

√
2mE/~2 is the deBroglie wavenumber.

• What partial waves are active (i.e. what values of `)?
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• What are the phase shifts in the active partial waves? Do they have the
proper behavior as k → 0?

• What is the differential cross section, dσ/dΩ for general values of k?

• What are the partial wave cross sections, σ`?

• Assume βk3
0 ¿ 1. Give an approximation to the total cross section σ(k)

for k ≈ k0.

• What is the total cross section for general values of k? What is the imagi-
nary part of the forward scattering amplitude? Do they satisfy the optical
theorem?

8. Combining Born and Partial Waves (6 points)

A potential V (r) is of the Yukawa form,

VYukawa(r) = β
exp(−µr)

r

for r > R, but is unknown for r < R. The differential cross-section dσ/dΩ has
been measured as a function of energy (= ~2k2/2m) and angle, for values of
k up to and of the order of 1/R. Attempts to fit dσ/dΩ to the partial wave
formulae using a small number of phase shifts δ`(k) (i.e. putting δ` = 0 for all
`’s greater than some `0) have been a miserable failure. [Aside: this is what
actually happened when the scattering of neutrons off protons was first done
at energies up to about 100 MeV. The fits to a straightforward partial wave
analysis of the type just described were hopelessly ambiguous.]

It is proposed that though the higher phase shifts are all small, their sum cannot
be neglected. This is annoying, because we do not want to use the partial wave
analysis for infinitely many values of `. In order to make progress, we make the
following assumptions:

• Because of the centrifugal potential ~2`(`+1)/2mr2, once ` is “big enough”
the behavior of V (r) for r < R does not matter, and we can therefore
calculate the behavior of δ` for large ` just from VYukawa(r).

• These δ` can be expanded in powers of β and we can keep only the first
term. That is, each of these δ`’s is small, so we can expand it. It is the
sum of all of them which is causing problems.

Carry out the following procedure to implement this idea, treating ` ≥ 1 as “big
enough” in the sense above.

(a) Write the Born approximation for the scattering amplitude fYukawa(θ, φ)
for the potential VYukawa. You can get this from Problem Set 9, so this
part of the problem is worth no points.
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(b) Calculate the mean value of fYukawa at fixed k, averaging over all directions
(θ, φ), and subtract this mean value from fYukawa.

[Since the s-wave scattering amplitude has nonzero mean, while all higher
partial wave scattering amplitudes have zero mean, what you have just
done is to subtract the s-wave part of the Born approximation to fYukawa.
What remains is the sum of the contributions of all partial waves with
` ≥ 1. Note that making the first Born approximation is equivalent to
linearizing fYukawa in β. So, you have now accomplished most of what we
set out to do.]

(c) You must now add back in an expression for the s-wave contribution to f .
As the s-wave is more sensitive to the small r region of the potential than
any other partial wave, you cannot analyze it using the Yukawa potential.
So, just add in the s-wave contribution to f written in terms of an unknown
phase shift δ0(k).

Write down a formula expressing dσ/dΩ in terms of m, ~, k, θ, µ, β and
δ0(k).

[To complete the story, what you now do is fit the data to your formula,
and thus obtain µ, β and δ0(k). The fit to the data now works beautifully,
and the fitted value of µ turns out to be the mass of the pion (times c/~)
just as Yukawa had predicted 20 years before.]

9. Scattering from a δ-Shell (13 points)

Consider s-wave (` = 0) scattering from the potential

V (r) = λ
~2

2mR
δ(r −R)

with λ a large positive constant. To find the phase shift δ0(k) we have to solve

d2u

dr2
+ k2u =

λ

R
δ(r −R)u ,

with u = 0 at r = 0 and u = sin(kr + δ) for r > R.

(a) What is u in r < R?

(b) By comparing u′(r)/u(r) just inside and just outside r = R, find a formula
to determine δ.

(c) Find the scattering length a, defined by limk→0 δ0 = −ka.

(d) Assume λ À 1. Sketch δ(k). Show that for kR just below nπ, with n a
positive integer, δ(k) increases very rapidly by π (as kR increases towards
nπ). Sketch the s-wave cross-section σ0. Show that the s-wave scattering
from this potential is the same as that from a hard sphere of radius R for
all values of kR except those such that kR is close to nπ. What is the
significance of these values?
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10. Ramsauer-Townsend Effect (6 points)

At very low energies only the s-wave contributes to scattering. If, for some
reason, the s-wave phase shift vanishes, then so does the scattering amplitude.
Under these circumstances a projectile can pass through material without any
scattering. This effect is known as the Ramsauer-Townsend Effect.

Consider a three dimensional “square well”,

V (r) =
−V0 for r ≤ a
0 for r > a

(2)

(a) Find the condition on γ2 = 2mV0a
2/~2 such that the cross section for

a particle of mass m is zero at zero energy. Your answer should be in
the form of a set of values of γ2, specified graphically. (You need not
obtain numerical values, but make sure that your graph is drawn accurately
enough and labelled so that someone can use your graph to read off the
first few numerical values to within 10%.)

(b) As you can see from part (a), it is useful to think of the Ramsauer-
Townsend effect as a function of the depth of the potential. The existence
of bound states is also a function of the depth of the potential. Show that
if a square well which displays an exact Ramsauer-Townsend effect is made
a little deeper or shallower (you have to figure out which) it then has a
bound state at threshold.

11. Scattering in the Semiclassical Approximation (4 points)

The semiclassical approximation becomes better at high energies. For most
problems high energies means scattering as opposed to bound states. It is quite
straightforward to estimate the phase shift in the semiclassical approximation.

Consider scattering in the s-wave in three dimensions. The radial wavefunction
obeys

−u′′(k, r) +
2m

~2
V (r)u(k, r) = k2u(k, r) (3)

and u(k, 0) = 0.

In this problem we will assume that V (r) is smooth and slowly varying and that
r2V (r) → 0 as r →∞ and that V (r) is negative at all r. (We’ll change the last
assumption in the next problem.)

Recall from 8.05 (and show for yourself if you like) that as r → ∞, u(k, r) ∼
sin(kr + δ0(k)), where δ0(k) is the phase shift.

Show that in the semiclassical approximation

δ0(k) =

∫ ∞

0

dr

[√
k2 − 2m

~2
V (r)− k

]
(4)
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12. A Semiclassical Analysis of Resonant Scattering (13 points)

Consider s-wave scattering for a particle of mass m off a potential V (r) which
vanishes at the origin, rises steadily as r increases from zero, reaches a maximum
at r = c, and then goes quickly to zero as r increases further.

For ` = 0, the radial wave function u(r) satisfies the same Schrödinger equation
as that for a particle in one dimension with potential V , subject to the boundary
condition u(0) = 0.

Consider scattering with energy E where 0 ¿ E ¿ V (c). The classical turning
points are at r = a and r = b with a < c < b.

(a) What is the semiclassical approximation to the wave function in the clas-
sically allowed region, 0 ≤ r < a?

(b) What is the ratio of the amplitude of the wave function u(r) in the semi-
classical approximation in the region x > b compared to that in the region
x < a, for generic values of E?

(c) For some special values of E, there is a qualitative change in the ratio
of the amplitude for x > b to the amplitude for x < a, compared to its
“generic” value at other energies. What condition determines these special
values of E?

(d) Describe the qualitative behavior of the s-wave phase shift and s-wave
cross-section for energies in the vicinity of the special values of E.

13. The Grover Algorithm

Consider the 8 dimensional Hilbert space formed by taking the tensor product
of the Hilbert spaces for three spin-one-half particles.

We denote the basis states as follows:

|0〉 = |0, 0, 0〉
|1〉 = |0, 0, 1〉
|2〉 = |0, 1, 0〉
|3〉 = |0, 1, 1〉
|4〉 = |1, 0, 0〉
|5〉 = |1, 0, 1〉
|6〉 = |1, 1, 0〉
|7〉 = |1, 1, 1〉

where, for example, |0, 1, 0〉 means a state in which all three spins are in eigen-
states of Sz, with eigenvalues +~/2, −~/2, +~/2.

Throughout this problem you will be constructing a variety of 8 × 8 matrices,
working in a basis with basis vectors ordered as above.
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(a) The first stage of the Grover algorithm is initialization. Suppose we start
with all spins up, namely in state |0〉. We want to find a unitary operator
Uinitialize such that

Uinitialize|0〉 = |s〉
where the state |s〉 is given by

|s〉 =
1√
8

[
|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉+ |7〉

]
.

Construct the 8× 8 matrix Uinitialize as the product of three 8× 8 unitary
matrices each of which acts only within the Hilbert space of one of the
three spins.

Note: my guess is that this is the part of this problem that you will find
trickiest. Note that you need not do this part of the problem in order to
do any of the other parts.

(b) Lets suppose that f(3) = 1 and f(a) = 0 for a = 0, 1, 2, 4, 5, 6, 7. In other
words, “3 is the winner”. Define a diagonal unitary matrix called (−1)f

that acts on basis states as follows:

(−1)f |a〉 = |a〉 for a 6= 3

(−1)f |3〉 = −|3〉 .

Write (−1)f as an 8× 8 matrix.

Note: this part of the problem is very easy as posed. Too easy, in fact.
Doing it this way is a little too much like “looking inside the black box and
seeing how f works”. What you should really do is construct this unitary
operator by introducing a “work-bit”, introducing an operator Uf which
represents a function call via Uf |a, 0〉 = |a, f(a)〉 and Uf |a, 1〉 = |a, 1 −
f(a)〉, introducing the operator L defined in lecture, and then constructing
(−1)f = UfLUf . I do recommend that you do this explicitly, but adding
the work bit means doubling the Hilbert space to 16×16 so I am not going
to ask you to turn this in.

(c) Write the unitary operator Us ≡ 2|s〉〈s|−1 as an 8×8 matrix. (You should
check that your matrix is unitary, but do not turn this check in.)

(d) Find the state [
Us (−1)f

]k

|s〉

for k = 0, 1, 2, 3. You should find that for k = 2, it is fairly close to the
state |3〉 while for k = 3, it has become less close to |3〉.
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Suppose that the state with k = 2 “is measured”, meaning that Sz is
measured for each of the three spins. What is the probability that the
outcome of this measurement will be +~, −~, −~ (which corresponds to
the state |3〉)? That is, what is the probability that upon measurement
you get the right answer?

Note: I proved in lecture that for large N , the best choice for k is the integer
closest to π

√
N/4. For our N = 8, which is not even very large, π

√
N/4 =

2.22. Now that you have understood the N = 8 example explicitly, you
should review the proof of the large-N result. [Note: although it is not
really necessary, it is fine if you choose to use a program like Mathematica
to multiply out matrices.]
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