Quantum Physics III (8.06) Spring 2006
Assignment 2

Feb 14, 2006 Due Wednesday Feb 22, 2006, 7pm

Please remember to put your name and section time at the top of your
paper.

Readings
The readings assigned last week should suffice for most of this problem set.
The reading assignment for the next two weeks is:

Supplementary notes on Canonical Quantization and Application to a Charged
Particle in a Magnetic Field.

Griffiths Section 10.2.4 is an excellent treatment of the Aharonov-Bohm effect,
but ignore the connection to Berry’s phase for now. We will come back to this
later.

Quite remarkably, given its length, Cohen-Tannoudji never mentions the Aharonov-
Bohm effect. It does have a nice treatment of Landau levels, however, in Ch.
VI Complement E

Those of you reading Sakurai should read pp. 130-139.

Problem Set 2

1.

Eigenstates of the “Translation” Operator in tight-banding model (5
points)

Consider an infinite dimensional Hilbert space with orthonormal basis states
that we will call |n) where n is an integer running from —oo to +o0.

The Hamiltonian for the system is

n=-+oo
H= ) |En)n| — An)(n+1] — Aln+1)(n[| .
This is the tight-banding model discussed in lecture. Define the “translation”
operator 1" by:
Tln) =|n+1)
You should check for yourself that T" commutes H.

Find the state which is an eigenstate of T with eigenvalue exp(—if). (Call this
state |6)). Find the energy of |6).



2. Relativistic degenerate electron gas (5 points)

Consider a 3-dimensional gas of N free ultra-relativistic (i.e. one can ignore
the rest mass of electrons) electrons at zero temperature. Show that the total
energy of the system can be written as

3
FE = ZNGF

where €5 is the energy of a single particle state at the Fermi surface.

3. White dwarfs, Neutron stars and Black holes (10 points)

(a) Consider a white dwarf star of the same mass as the Sun. Assume that
the star is mainly made of Carbon. What is the radius of star? Note that
the Sun has a mass of M,,,, = 2 x 1033g and a radius of R, = 7 x 10°km.
Find the ratio of the mass density of the white dwarf and the Sun.

(b) In a neutron star, the neutron degeneracy pressure stabilizes the collapse.
Calculate the radius of a neutron star with the mass of the Sun. You can
assume that the star only consists of neutrons and the neutron gas is free!.
Find the (neutron) Fermi energy and compare it to the rest energy of a
neutron.

(c) If a star has a mass M that is larger than the Chandrasekhar mass for a
neutron star, the degenerate neutron pressure cannot balance the attrac-
tive force of the gravity and the star will collapse to form a black hole. A
black hole has a “surface of no return”, i.e. any object lying within a radius
rs from the center of gravity of the black hole can not escape and will be
devoured by the hole. r; is called the “Schwarzschild radius”. Estimate r;
by combining M with Gy and ¢ to obtain a length. Evaluate your r, for
M = Mgy,.

(d) Compare various radii you obtained for (a) (b) (c).

4. The Dirac comb (10 points)

The qualitative behavior of solids is dictated to a large extent simply by the
fact that the electrons feel a periodic potential. The example we discussed in
lecture is called the “tight binding model.” The other classic example is the
Dirac comb, which Griffiths treats on pages 226-228. You should read through
Griffiths’ treatment.

Do Griffiths problem 5.20.

IThis is not a very good approximation to the realistic situation in which nuclear interactions
between neutrons are important.



5. Analysis of a general one-dimensional periodic potential (30 points)

Consider a one-dimensional periodic potential U(z) that we shall choose to view
as the sum of lots of identical potential barriers v(z) of width a, centered at the
points x = na, where n is an integer.

We shall require v to be even, that is v(x) = v(—z), but other than that we
shall allow the shape of the barrier to be arbitrary. v(z) = 0 for |z| > a/2. In
pictures, v(x) looks like:
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The periodic potential is then given by

and looks like:
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Before we analyze U, let us analyze v. For any energy E > 0, there are two lin-
early independent solutions to the Schrodinger equation with the single barrier
potential v(x). One, which we shall call ¥ (z) describes a plane wave incident
from the left:

Yr(r) = exp(ikz) 4+ rexp(—ikz), z < —a/2
= texp(ikz) , r>a/2, (1)

where k is related to E by E = h*k?/2m. We shall not need the form of 1) where
the potential is nonzero. The other solution with the same energy describes a
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wave incident from the right:
Yr(r) = texp(—ikx), x < —a/2
= exp(—ikz)+rexp(ikz), =>a/2, (2)

with the same reflection coefficient r and transmission coefficient ¢ as in (1)
because v(z) is even.

We can write the complex number ¢ in terms of its magnitude and phase as
t = [t exp(id) , (3)

where 9 is a real number known as the phase shift since it specifies the phase of
the transmitted wave relative to the incident one. Conservation of probability
requires that

[t + |r|* = 1. (4)

To this point, we have reviewed 8.04 material and established notation.

(a) Let vy and 19 be any two solutions of the Schrédinger equation

R &,

2m da?

+v(2)Y; = B

with the same energy. Define the “Wronskian” of these two solutions by

W (1, ) = () e () — () ()

Prove that W is independent of x by showing that dW/dz = 0.

(b) By evaluating W (v, v},), prove that rt* is pure imaginary, so r must have
the form
r = +i|r| exp(id) (5)
where § is the same as in (3).

(¢) Now, we begin our analysis of solutions of the Schrodinger equation in the
periodic potential U. Since U = v in the region —a/2 < z < a/2, in that
region any solution to the Schrodinger equation with potential U must take
the form

U(x) = AYp(z) + Bygr(z) , —a/2<x<a/2, (6)
with ¢y, and ¥ given by (1) and (2). Bloch’s theorem tells us that

(o +a) = exp(iKa)y(a)



and, with ¢/ = dy/dzx,
V(x4 a) = exp(iKa))'(z) .
By imposing these conditions at x = —a/2, show that the energy of the
electron is related to K by
2 _ .2

—r : 1 :
5 exp(ika) + % exp(—ika) (7)

cos Ka =

with k specifying the energy via
E = R*E*/2m .

[Note that some of you may succeed in deriving an expression relating all
the quantities in (7) — and no other quantities — but then not succeed
in reducing your expression to the form (7). If so, you will not lose many
points. And, make sure to use (7), rather than whatever you obtain, in
the following parts.|

Show that as a consequence of (4), (5) and (7) the energy and K of the
Bloch electron are related by

cos(ka + 6)
iz

cos Ka = : (8)
Note that |t| is always less than one, and becomes closer and closer to
one for larger and larger k£ because at high incident energies, the barrier
becomes increasingly less effective. Because [t| < 1, at values of k in the
neighborhood of those satisfying ka 4+ 6 = nm, with n an integer, the right
hand side of (8) is greater than one, and no solution can be found. The
regions of E corresponding to these regions of k£ are the energy gaps.

Suppose the barrier is very strong, so that |t| ~ 0, |r| =~ 1. Show that
the allowed bands of energies are then very narrow, with widths of order
|t|. [Note: this is the tight-binding case, discussed in lecture. This is the
case that applies to a deeply bound atomic energy level which in a crystal
becomes a narrow band. In this case, because the energy level is well below
the top of the barrier between single-atom potential wells, “transmission”
requires tunnelling, meaning that |¢| is small.]

Suppose the barrier is very weak (so that || = 1, |r| = 0, § ~ 0). Show
that the energy gaps are then very narrow, the width of the gap containing
k = nm/a being 2wnh?|r|/ma®. [Note: this shows that the continuum
states — namely those whose energies are above the top of the barriers —
are also separated into bands. The gaps between the bands get narrower
and narrower for higher and higher energy continuum states. |
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(g) Show that in the special case where v(x) = 4ad(z) where §(x) is the
Dirac delta function — i.e. the Dirac comb model discussed in Griffiths
P-226-228 — the phase shift and transmission coefficent are given by

2
cotd = —M
mao
and
|t| = cosd

and that (8) becomes the expression derived in Griffiths.



