
Quantum Physics III (8.06) Spring 2006
Assignment 3

Feb 17, 2006 Due Feb 28, 2006, 7pm

• Please remember to put your name and section time at the top of your
paper.

Readings
The current reading assignment is:

• Supplementary notes on Canonical Quantization and Application to a Charged
Particle in a Magnetic Field.

• Griffiths Section 10.2.4 is an excellent treatment of the Aharonov-Bohm effect,
but ignore the connection to Berry’s phase for now. We will come back to this
later.

• Cohen-Tannoudji Ch. VI Complement E

• Those of you reading Sakurai should read pp. 130-139.

Problem Set 3

1. Classical motion in a Magnetic Field (10 points)

Consider a particle of mass m and charge q moving along a trajectory ~x(t)

through an electric field ~E and magnetic field ~B, which are specified by scalar
and vector potentials φ(~x, t) and ~A(~x, t) via

~E = −~∇φ(~x, t)− 1

c

∂ ~A

∂t
~B = ∇× ~A(~x, t) . (1)

As discussed in lecture, the classical Hamiltonian for this system is

H(~x, ~p) =
1

2m

(
~p− q

c
~A
)2

+ qφ . (2)

where ~p is the canonical momentum.
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(a) (optional, bonus credit: 5 points) Show that the Hamilton equations de-
rived from this Hamiltonian are

m~v = ~p− q

c
~A, ~v = ~̇x (3)

and the force law
m~̈x =

q

c
~v × ~B + q ~E . (4)

[Note that equation (3) implies that canonical momentum ~p is NOT the
same as kinetic momentum m~v. This is due to that we have a velocity-
dependent force. ]

(b) (5 points) Now set ~E = 0 and consider a constant magnetic field along
z-direction, i.e. Bx = By = 0, Bz = B = const. Classically in the x − y
plane the particle travels in a circle around a “center of orbit” with an
angular velocity ωL given by

ωL =
qB

mc
. (5)

Suppose that the “center of orbit” has coordinates (x0, y0). Show that
x0, y0 can be expressed in terms of the coordinates (x, y) and the velocities
(vx, vy) of the particle as

x0 = x +
vy

ωL

, y0 = y − vx

ωL

. (6)

2. Gauge Invariance and the Schrödinger Equation (14 points)

In canonical quantization of (2) one promotes ~x and ~p into operators with
canonical commutation relations (we use hat to denote quantum operators)

[x̂j, p̂k] = ih̄δjk , i.e. p̂i = −ih̄
∂

∂xj

. (7)

Motivated by classical equation (3), we introduce velocity operators, defined by

v̂i =
1

m

(
p̂i − q

c
Ai

)
(8)

The quantum Hamiltonian is given by

H =
1

2m

(
~̂p− q

c
~A(~x, t)

)2

+ qφ(~x, t)

=
1

2
m

(
v̂2

x + v̂2
y + v̂2

z

)
+ qφ(~x, t) (9)

with the corresponding time dependent Schrödinger equation given by

ih̄
∂ψ

∂t
=

1

2m

(
−ih̄~∇− q

c
~A(~x, t)

)2

ψ(~x, t) + qφ(~x, t)ψ(~x, t) . (10)
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(a) Consider

~A′(~x, t) = ~A(~x, t)− ~∇f(~x, t)

φ′(~x, t) = φ(~x, t) +
1

c

∂f

∂t
(~x, t) . (11)

( ~A′, φ′) and ( ~A, φ) describe the same ~E and ~B. Show that if ψ(~x, t) solves

the Schrödinger equation with ~A, φ (which we will call “unprimed gauge”),
then

ψ′(~x, t) ≡ exp
(
− iq

h̄c
f(~x, t)

)
ψ(~x, t) (12)

solves the Schrödinger equation with ~A′, φ′ (which we will call “primed
gauge”).

(b) Show that 〈ψ|ψ〉 and 〈ψ|x̂i|ψ〉 are the same in the primed and unprimed
gauges. This means that the identity operator and the operator x̂i are
“gauge invariant operators”.

(c) Show that 〈ψ|p̂i|ψ〉 is not gauge invariant, whereas

〈ψ|v̂i|ψ〉 (13)

is gauge invariant. Now assuming that f is time-independent, show that
the Hamiltonian is a gauge invariant operator1.

[Conclusion: the “canonical momentum” p̂i is not a gauge invariant oper-
ator, but the “kinetic momentum” mv̂i is a gauge invariant operator.]

(d) Suppose that ψn(~x) is an eigenstate of the Hamiltonian in the unprimed
gauge, with eigenvalue En. Assume that the gauge transformation function
f is time-independent. Show that ψ′n(~x) is an eigenstate of the Hamiltonian
in the primed gauge, with the same eigenvalue En.

[You have just showed that the spectrum of energy levels, and the degen-
eracy of each level, are the same in all gauges.]

In 8.05, we said that “physical observables are matrix elements of hermitian
operators.” We should have said: “physical observables are matrix elements of
gauge invariant hermitian operators.”

1When f is time-dependent, 〈ψ|H|ψ〉 and 〈ψ′|H ′|ψ′〉 are no longer the same. But one can show
that differences in expectation values of H are gauge independent, i.e. for any states |ψ〉 and |φ〉
satisfying the Schrodinger equation, 〈ψ|H|ψ〉 − 〈φ|H|φ〉 is gauge invariant. This weaker form of
gauge invariance is enough since only energy differences are observable.
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3. General aspects of quantum motion in a magnetic field (15 points)

The quantum motion for a particle in a magnetic field shows some resemblances
to the classical motion and also many important differences. The differences
can be traced to various commutators derived in this problem, in particular
equations (14) and (17).

The questions in this problem should be derived without explicitly choosing a
gauge.

(a) In this part we consider an arbitrary magnetic field (not necessarily con-
stant). Find the commutators

[v̂i, v̂j] =? (14)

where v̂i is the velocity operator defined by

v̂i =
1

m

(
p̂i − q

c
Ai

)
(15)

What can you conclude about the motion of the particle from (14)?

(b) In this and all parts below, we take ~E = 0 and

Bx = By = 0, Bz = B = const

and look at the motion in x − y plane only. Motivated by the classical
expressions (6) we introduce quantum operators

x̂0 = x̂ +
v̂y

ωL

, ŷ0 = ŷ − v̂x

ωL

(16)

Find the commutators
[x̂0, ŷ0] =? (17)

You should find (17) non-vanishing. What can you say about the motion
in x− y plane from (17)?

(c) Find the commutators

[x̂0, v̂x,y] =?, [ŷ0, v̂x,y] =? (18)

(d) Using (18) to show that

[x̂0, H] = [ŷ0, H] = 0 (19)

Equations (17) and (19) imply that one of x̂0 and ŷ0 (or an arbitrary linear
combination of them, but not both) can be diagonalized together with the
Hamiltonian.
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4. Electromagnetic Current Density in Quantum Mechanics (12 points)

The probability flux in the Schrödinger equation can be identified as the elec-
tromagnetic current density, provided the proper attention is paid to the effects
of the vector potential. This current density will play a role in our discussion
of the quantum Hall effect.

Way back in the 8.04 you derived the probability flux in quantum mechanics:

~S(~x, t) =
h̄

m
Im

[
ψ∗~∇ψ

]
. (20)

In the presence of electric and magnetic fields, the probability current is modified
to

Si(~x, t) =
h̄

m
Im [ψ∗∂iψ]− q

mc
ψ∗ψAi = Re (ψ∗v̂iψ) (21)

This probability flux is conserved and when multiplied by q, the particle’s
charge, it can be interpreted as the electromagnetic current density, ~j ≡ q~S.

(a) Derive the expression eq. (21) for the probability flux. [Hint: Choose to

work in a gauge where ~∇ · ~A = 0. The derivation of eq. (21) is parallel to
that of (20), i.e. you need to derive

∂ρ

∂t
= −~∇ · ~S

with ρ = ψ∗ψ and ~S given by eq. (21).]

(b) Assuming that ψ has units 1/l3/2 as one would expect from the normal-

ization condition,
∫

d3xψ∗ψ = 1, show that ~j = q~S has units of charge per
unit area per unit time, which are the dimensions of current density.

(c) In part (a), you assumed that ~∇ · ~A = 0. Now show that ~S has exactly the

same form in any gauge, ie. show that ~S is gauge invariant. That is, show
that if we make the following transformations, then ~S ′ defined in terms of
~A′ and ψ′ is identical to ~S defined in terms of ~A and ψ.

~A′(~x, t) = ~A(~x, t)− ~∇f(~x, t)

ψ′(~x, t) = exp
(
− iq

h̄c
f(~x, t)

)
ψ(~x, t)

where f is any function of ~x and t.

5. Translation Invariance in a Uniform Magnetic Field (14 points)

One of the surprising things in our analysis of the quantum mechanics of a
particle in a uniform magnetic field is that even though ~B is uniform, and we
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would therefore expect translation invariance in the xy-plane, we find that, in
any gauge we choose, the Hamiltonian does not appear to reflect this symmetry.

The resolution to this question is that translation operators which do commute
with the Hamiltonian can be constructed. We shall see, however, that there is
a catch.

Consider a magnetic field ~B = (0, 0, B). We introduce operators

Qx = −qB

c
ŷ0, Qy =

qB

c
x̂0 (22)

and
Ua = e

i
h̄

Qxa, Vb = e
i
h̄

Qyb (23)

where x̂0, ŷ0 were defined in (16) and a, b are arbitrary real constants. Now
we will show that Ua and Vb are in fact the desired translation operators in x
and y directions. Note that due to equations (19), Ua and Vb clearly commute

with the Hamiltonian. We work in the gauge in which ~A = (−By, 0, 0). The
time-independent Schrödinger equation (for states in the xy-plane) is

−h̄2

2m


∂2ψ

∂y2
+

(
∂

∂x
+

iqB

h̄c
y

)2

ψ


 = Eψ (24)

(a) Find the explicit expression of Qx and Qy by plugging ~A = (−By, 0, 0)
into (22).

(b) The appearance of y in (24) destroys (on the face of it) invariance under
translation in the y direction. Show, however, that if ψ(x, y) is a solution
of (24), then so too is ψ̃(x, y) defined by

ψ̃(x, y) = ψ(x, y + b) exp(iqBbx/h̄c) . (25)

Translation in x direction is trivial since (24) does not explicitly depend
on x.

[Hint: be careful with your notation. Express (∂/∂x + iqBy/h̄c)ψ̃ at the
point (x, y) in terms of ψ and ∂ψ/∂x at the point (x, y + b).]

(c) Show that
Vb|ψ〉 = |ψ̃〉 . (26)

and
Uaψ(x, y) = ψ(x + a, y) (27)

Thus Ua and Vb can indeed be interpreted as translation operators.
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(d) Calculate
[Ua, Vb] =? (28)

and show that Ua commutes with Vb if and only if ab is an integer multiple
of AB = 2πh̄c/qB and hence if and only if abB is an integer multiple of
Φ0 = hc/q.

[Note: The intuition behind using Qx ∝ ŷ0 and Qy ∝ x̂0 to generate trans-
lations in x and y directions is as follows. On the one hand, x̂0 and ŷ0 can
be interpreted as the operators corresponding to the “center of orbit”. On
the other hand, as you have showed in equation (17), x̂0 and ŷ0 do not com-
mute with each other and thus cannot be diagonalized simultaneously. In
fact, equation (17) indicates that they should be considered as a canonical
pair with a commutation relation similar to that of a position operator and
momentum operator. So they can be considered as the operators which
generate translations of each other. That is, x̂0 generates translations in
the center of motion in y-direction and ŷ0 generates translations in the
center of motion in x-direction.]
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