
Quantum Physics III (8.06) Spring 2006
Assignment 5

March 3, 2006 Due Tuesday March 14, 2006

• Please remember to put your name and section time at the top of your paper.

• Remember that your midterm will be on Thursday March 23, in class. (i.e.
12:30pm to 2:00 pm in 4-370.)

Readings
The reading assignment for this problem set and part of the next one is:

• Griffiths all of Chapter 6.

• Cohen-Tannoudji Chapter XI including Complements A-D.

Problem Set 5

1. The Aharonov-Bohm Effect on Energy Eigenvalues (20 points)

You have seen the “standard presentation” of the Aharonov-Bohm effect in lec-
ture. The standard presentation has its advantages, and in particular is more
general than the presentation you will work through in this problem. However,
students often come away from the standard presentation of the Aharonov-
Bohm effect thinking that the only way to detect this effect is to do an inter-
ference experiment. This is not true, and the purpose of this problem is to
disabuse you of this misimpression before you form it.

As Griffiths explains on pages 385-387 (344-345 in 1st Ed.), the Aharonov-Bohm
effect modifies the energy eigenvalues of suitably chosen quantum mechanical
systems. In this problem, I ask you to work through the same physical example
that Griffiths uses, but in a different fashion which makes more use of gauge
invariance.

Imagine a particle constrained to move on a circle of radius b (a bead on a wire
ring, if you like.) Along the axis of the circle runs a solenoid of radius a < b,

carrying a magnetic field ~B = (0, 0, B0). The field inside the solenoid is uniform
and the field outside the solenoid is zero. The setup is depicted in Griffiths’
Fig. 10.10. (10.12 in 1st Ed.)

(a) Construct a vector potential ~A which describes the magnetic field (both
inside and outside the solenoid) and which has the form Ar = Az = 0 and
Aφ = α(r) for some function α(r). We are using cylindrical coordinates z,
r, φ.
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(b) Now consider the motion of a “bead on a ring”: write the Schrödinger
equation for the particle constrained to move on the circle r = b, using the
~A you found in (a). Hint: the answer is given in Griffiths.

(c) Solve the Schrodinger equation of (b) and find the energy eigenvalues and
eigenstates.

(d) In this and the following parts we find the energy eigenvalues using a
different gauge.

Since ~∇ × ~A = 0 for r > a, it must be possible to write ~A = ~∇f in any
simply connected region in r > a. [This is a theorem in vector calculus.]
Show that if we find such an f in the region

r > a and − π + ε < φ < π − ε ,

then
f(r, π − ε)− f(r,−π + ε) → Φ as ε → 0 .

Here, the total magnetic flux is Φ = πa2B0. Now find an explicit form for
f , which is a function only of φ.

(e) Use the f(φ) found in (d) to gauge transform the Schrödinger equation
for ψ(φ) within the angular region −π + ε < φ < π − ε to a Schrödinger
equation for a free particle within this angular region. Call the original
wave function ψ(φ) and the gauge-transformed wave function ψ′(φ).

(f) The original wave function ψ must be single-valued for all φ, in particular
at φ = π. That is, ψ(π−ε)−ψ(−π+ε) → 0 and ∂ψ

∂φ
(π−ε)− ∂ψ

∂φ
(−π+ε) → 0

as ε → 0. What does this say about the gauge-transformed wave function?
I.e., how must ψ′(π − ε) and ψ′(−π + ε) be related as ε → 0?

[Hint: because the f(φ) is not single valued at φ = π, the gauge trans-
formed wave function ψ′(φ) is not single valued there either.]

(g) Solve the Schrödinger equation for ψ′, and find energy eigenstates which
satisfy the boundary conditions you derived in (e). What are the allowed
energy eigenvalues?

(h) Plot the energy eigenvalues as a function of the enclosed flux, Φ. Show that
the energy eigenvalues are periodic functions of Φ with period Φ0, where
you must determine Φ0. For what values of Φ does the enclosed magnetic
field have no effect on the spectrum of a particle on a ring? Show that the
Aharonov-Bohm effect can only be used to determine the fractional part
of Φ/Φ0.

[Note: you have shown that even though the bead on a ring is everywhere

in a region in which ~B = 0, the presence of a nonzero ~A affects the energy
eigenvalue spectrum. However, the effect on the energy eigenvalues is
determined by Φ, and is therefore gauge invariant. To confirm the gauge
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invariance of your result, you can compare your answer for the energy
eigenvalues to Griffiths’ result, obtained using a different gauge.]

2. Fractional Quantum Hall Effects (5 points)

We will not be able to study the fractional quantum hall effect in 8.06. However,
I want to give you at least a some sense of it, at a qualitative level. At the very
least, I want to convey how the discovery of this effect was even more of a
surprise than the discovery of the integer quantum hall effect. This problem is
a bona fide part of this problem set, and “counts” in that sense. However, the
material alluded to in this problem will not appear on the midterm or final.

The fractional quantum hall effect was discovered in 1982 by Tsui, Störmer
and Gossard. They studied a very clean sample of the same sort in which the
integer quantum hall effect had been discovered two years earlier. At a low
temperature, and in a high enough magnetic field, they discovered a plateau
with

1

Rhall

=
1

3

e2

h
and Rlong = 0 (1)

occurring over a range of filling fractions centered at

nhc

eB
=

1

3
.

If we attempt to describe this with 8.06 physics, we would say we have a one-
third filled Landau level, and as such would have very many degenerate ground
states to choose between, corresponding to the choice of which third of the states
that make up the lowest Landau level we fill, and which two thirds we leave
empty. Depending on what choice among the many possibilities we made, we
could find many different values of Rhall and would generically find Rlong 6= 0.
This cannot describe the experimental result.

The correct description of the fractional quantum hall effect relies crucially on
the Coulomb interaction between the electrons. The state described by the
“Laughlin wave function”, named after Robert Laughlin who proposed it as a
way to understand the experimental results, cannot be described by first solving
for single electron wave functions, and then filling some of these while leaving
others empty. In other words, it is not a direct product of single electron wave
functions. It is an intrinsically many-electron wave function, requiring methods
beyond those we shall learn in 8.06 to study. However, we can understand at a
qualitative level why its discovery required a very clean sample: in order for the
fractional quantum hall effect to be observed, the effects of Coulomb repulsion
between the electrons must dominate over the interaction between electrons
and impurities. In the time since Tsui et al’s discovery, as ever cleaner samples
have been studied, plateaus have been seen at more and more fractional hall
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conductivities, for example at 1/3, 2/5, 3/7, 4/9, 5/11, 6/13, . . . and 2/3, 3/5,
4/7, 5/9, 6/11, 7/13, . . . and many more. It turns out that all these states are
described by nondegenerate ground state wave functions, very different from the
massively degenerate states we would construct à la 8.06, starting with single
electron states, ignoring Coulomb interactions, and simply filling a fraction of
a Landau level.

The purpose of this problem is for you to work out one very surprising conse-
quence of the existence of the “1/3-plateau”. Take the experimental facts (1)
at nhc/eB = 1/3 as given. Imagine inserting an infinitesimally thin solenoid
within this sample, perpendicular to the plane of the sample. (The flux tube
“pokes through” the sample. This is a thought experiment.) Slowly increase
the flux through this solenoid from zero to Φ0, the quantum of flux. Now,
consider a circular path, within the sample, encircling the flux tube at a great
distance. Use the experimentally measured hall conductance to determine how
much charge crosses this circular path as the flux in the solenoid increases from
0 to Φ0. Call your answer “Q”. Determine the magnitude of Q but do not
worry about its sign.

You’ve now completed the problem I’ve posed for you, but lets take a minute
to understand the significance of the answer. From our study of the Aharonov-
Bohm effect, we can conclude that the Hamiltonian of the system is the same at
the beginning and the end of the shenanigans you have performed above. Flux 0
and flux Φ0 in your flux tube give the same Hamiltonian for the electrons in the
sample. However, because your flux tube penetrates through the sample, during
the time the flux was increasing it can have had a nontrivial effect (beyond just
the Aharonov-Bohm effect) on those electrons whose wave functions are nonzero
at the location of the solenoid, and which thus feel the magnetic field in the
solenoid. What this means is that although the Hamiltonian at the end of your
shenanigans is the same as at the beginning, the state of the system may now be
in an excited state, with a different energy. Assuming that the system started
in its ground state, it could now be in an excited state. In fact, this is what has
happened. By increasing the flux in the solenoid as you did, you have created
an excitation of the system, with some finite but nonzero energy, localized in the
vicinity of your flux tube. The calculation you did above determines the charge
Q of this excitation. This argument, due originally to Laughlin, shows that
(regardless of what the detailed description of its ground state wave function
turns out to be) the observed 1/3 quantum hall plateau must be described by
a Hamiltonian which includes localized excitations whose charge is Q. This
should convince you that its ground state wave function is quite nontrivial! In
addition to being nondegenerate, the ground state is also “incompressible”. If
you think carefully about the thought experiment you analyzed, you should get
a sense of the meaning of this term in this context.
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3. Perturbation of the Three-Dimensional Harmonic Oscillator (18 points)

The spectrum of the three-dimensional harmonic oscillator has a high degree of
degeneracy. In this problem, we see how the addition of a perturbation to the
Hamiltonian reduces the degeneracy. This problem is posed in such a way that
you can work through it before we even begin to discuss degenerate perturbation
theory in lecture.

Consider a quantum system described by the Hamiltonian

H = H0 + H1 (2)

where

H0 =
1

2m
~p 2 +

1

2
mω2~x 2 (3)

where ~x = (x1, x2, x3) and ~p = (p1, p2, p3). The perturbing Hamiltonian H1 is
given by

H1 = KL2 (4)

where K is a constant and where L2 = x3p1 − x1p3.

In parts (a)-(e) of this problem, we study the effects of this perturbation within
the degenerate subspace of states which have energy E = (5/2)h̄ω when K = 0.

(a) Set K = 0. Thus, in this part of the problem H = H0. Define creation and
annihilation operators for “oscillator quanta” in the 1, 2 and 3 directions.
Define number operators N1, N2, N3. Denote eigenstates of these number
operators by their eigenvalues, as |n1, n2, n3〉. What is the energy of the
state |n1, n2, n3〉? How many linearly independent states are there with
energy E = (5/2)h̄ω? [That is, what is the degeneracy of the degenerate
subspace of states we are studying?]

(b) Express the perturbing Hamiltonian H1 in terms of creation and annihila-
tion operators.

(c) What is the matrix representation of H1 in the degenerate subspace you
described in part (a)?

(d) What are the eigenvalues and eigenstates of H1 in the degenerate subspace?
What are the eigenvalues and eigenstates of H = H0+H1 in the degenerate
subspace?

(e) What is the matrix representation of H0+H1 in the degenerate subspace if
you use the eigenvectors of H1 as a new basis? (I.e. instead of the original
|n1, n2, n3〉 basis.)

[Note: As we shall see in part (f), this problem is “too simple” in important
ways. The aspect of this problem which will generalize when we consider
more generic perturbations is that if a perturbation breaks a degeneracy,
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then even an arbitrarily small but nonzero perturbation has qualitative
consequences: it selects one particular choice of energy eigenvectors, within
thepreviously degenerate subspace. In the present problem, this can be
described as follows: if K were initially zero and you were happily using the
|n1, n2, n3〉 states as your basis of energy eigenstates, and then somebody
“turns on” a very small but nonzero value of K, this forces you to make
a qualitative change in your basis states. The “rotation” you must make
from your previous energy eigenstates to the new states which are now the
only possible choice of energy eigenstates is not a small one, even though
K is arbitrarily small.]

(f) |ψ〉 and |φ〉 are eigenstates of H0 with different energy eigenvalues. That
is, |ψ〉 and |φ〉 and belong to different degenerate subspaces. Show that
〈φ|H1|ψ〉 = 0 for any two such states. Relate this fact to a statement you
can make about the operators H0 and H1, without reference to states.

[The fact that 〈φ|H1|ψ〉 = 0 if |ψ〉 and |φ〉 and belong to different de-
generate subspaces means that H1 is a “non-generic” perturbation of H0;
a more general perturbation would not have this property. It is only for
perturbations with this property that the analysis you have done above
— which focusses on one degenerate subspace at a time — is complete.
Notice also that in order to analyze H = H0 + H1, we did not have to
assume that K was in any sense small. If H1 were “generic”, we would
have had to assume that K was small in order to make progress.]

4. A Delta-Function Interaction Between Two Bosons in an Infinite
Square Well (8 points)

Do Griffiths problem 6.3.

[The integrals that come up in this problem can certainly all be done by hand;
however, there is also nothing wrong with doing them by Mathematica or the
equivalent.]

5. Anharmonic Oscillator (14 points)

Consider the anharmonic oscillator with Hamiltonian

H =
p2

2m
+

mω2x2

2
+ λx3 ,

treating the λx3 term as a perturbation. [Hint: you should not find yourself do-
ing any integrals as you do this problem; you should find yourself manipulating
harmonic oscillator creation and annihilation operators and harmonic oscillator
energy eigenstates.]

(a) Show that the first order shift in the ground state energy is zero. Calculate
the shift to order λ2.
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(b) Calculate the ground state wave function to order λ. (You may just write
your answer as a sum of harmonic oscillator states.)

(c) Sketch the potential V (x) as a function of x for small λ. Is the state
you found in (b) anything like the true ground state? What effect has
perturbation theory failed to find?

(d) Now consider instead an anharmonic oscillator with

H =
p2

2m
+

mω2x2

2
+ λx4 ,

treating the λx4 term as a perturbation. Calculate the energy of the ground
state to order λ. Sketch V (x) for λ small and positive and for λ small and
negative, and comment on what perturbation theory has told you in each
case, and in each case comment on whether you think that perturbation
theory has given a good approximation to the true ground state energy.

7


