
Quantum Physics III (8.06) Spring 2006
Assignment 7

March 27, 2006 Due Tuesday April 11, 2006

• Please remember to put your name and section time at the top of your paper.

• This problem set is due in a week, as usual. The next problem set, Problem Set
8, will be available before Tuesday April 11 as usual but will be due on Tuesday
April 25. You will have 2 weeks for Problem Set 8 because in the interim the
first draft of your term paper is due.

• The Final Exam will be on Monday May 22, 1:30-4:30pm, in Johnson
Ice Rink.

• If you want further problems, beyond those I assign below, with which to teach
yourself about the variational method, prepare for the final exam, gain physics
intuition and learn some new applications, you could try Griffiths’ Problems
7.7, 7.15, 7.16, 7.17, 7.18, 7.19, 7.20.

Readings
The reading assignment for this problem set and the first part of the next one is:

• Griffiths Chapter 7.

• Cohen-Tannoudji Chapter XI, Complements E (scanned copy available at 8.06
website).

• Griffiths Chapter 8 and the Supplementary Notes on the Connection Formulae.
(You do not need the latter for this problem set.)

Problem Set 7

1. Variational bound on the ground state in a power-like potential (10
points)

Consider a particle of mass m moving in the one dimensional potential

V (x) = λx4 (1)

We can obtain an upper bound on the energy of the ground state using the
variational method. To find a trial wave function, we regard (1) as a harmonic
oscillator potential with a space-dependent frequency, i.e. V (x) = 1

2
mω2(x)x2
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with 1
2
mω2(x) = λx2. This motivates us to choose the trial wave function to

resemble the ground state of a harmonic oscillator potential, i.e.

ψ(x) = Ae−bx2

Find the value of b that minimizes 〈ψ|H|ψ〉 and obtain an upper bound on the
ground state energy. (Hint: normalize ψ first to express A in terms of b.)

2. Variational bound on the excited states (15 points)

(a) Prove the following corollary to the variational principle: if 〈ψ|ψgs〉 = 0,
then 〈ψ|H|ψ〉 ≥ Efe, where |ψgs〉 denotes the ground state wave function
and Efe is the energy of the first excited state.

In general it is difficult to be sure a state |ψ〉 is orthogonal to |ψgs〉 since the
latter is generally not known exactly. However, if the potential V (x) has
some symmetry, it is often possible to realize 〈ψ|ψgs〉 = 0. For example,
if the potential V (x) is an even function of x, then the ground state wave
function should also be even in x and thus an odd trial function will be
automatically orthogonal to ψgs.

(b) Give an example of a set of trial wave functions, specified by a single
parameter, that could be used to obtain an upper bound on the first excited
state energy of (1). Explain your reasoning for choosing the ansatz. But
do not go further than writing down the ansatz.

(c) Choose a set of trial wave functions, specified by a single parameter to ob-
tain an upper bound on the first excited state energy of the one-dimensional
harmonic oscillator V (x) = 1

2
mω2x2.

3. Variational bound on the ground state in an exponential potential
(15 points)

Unlike in one dimension, an attractive potential in three dimensions does not
always have a bound state. A simple variational guess can give us an estimate
of how strong a potential must be in order to have a bound state, even though
the exact solution would require solving the Schrödinger equation numerically.

Consider a particle of mass m moving in three dimensions under a central force
derived from an exponential potential,

V (r) = −αe−2µr ,

where α and µ are positive. Take a simple exponential variational ansatz for
the ground state wavefunction:

ψλ(r) = Ce−λr . (2)
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(a) Find the constant C by demanding that
∫

d3r|ψλ(r)|2 = 1.

(b) Compute the variational estimate of the energy of ψ, as a function of λ.

Hint: Once you have normalized the wave function, the variational esti-
mate is given by

E(λ) =
∫

d3r





h̄2

2m

∣∣∣∣∣
dψλ(r)

dr

∣∣∣∣∣
2

+ V (r) |ψλ(r)|2


 (3)

Hint: The only integral needed is
∫∞
0 dxxne−x = n!.

Answer: E(λ) = λ2

2m
− α( λ

µ+λ
)3.

(c) Show that for small α, the minimum value of E(λ) is zero and is obtained
for λ = 0. Interpret this result (for example, where is the particle found
when λ = 0?).

(d) Lets scale out some of the dimensionful parameters to make this problem
easier to analyze. Consider E = mE

µ2 . Show that E can be written as a

function of x = λ/µ and a scaled strength of the potential, κ = αm/µ2.
Rewrite the result of part (b) as E(κ, x). Analyze this equation graphically
or numerically and find the minimum value of κ for which a bound state
exists. What is the value of x at this value of κ.

(e) Does the result of the previous section give you a minimum value of α (for
fixed m and µ) required for a bound state, or a maximum, or neither?
Explain.

4. Tunnelling and the Stark Effect (20 points)

The Stark effect concerns the physics of an atom in an electric field. In this
problem, we discuss the possibility that in an electric field, the electron in an
atom can tunnel out of the atom, making the atomic bound states unstable.
We consider this effect in a simpler one-dimensional analog problem.

Supose an electron is trapped in a one-dimensional square well of depth V0 and
width d:

V (x) = −V0 for |x| < d/2

= 0 for |x| ≥ d/2 .

Suppose a weak constant electric field in the x-direction with strength E is
turned on. That is V → (V − eEx). Assume throughout this problem that
eEd ¿ h̄2/2md2 ¿ V0.

(a) Set E = 0 in this part of the problem. Estimate the ground state energy
(ie the amount by which the ground state energy is above the bottom of
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the potential well) by pretending that the well is infinitely deep. (Because
h̄2/2md2 ¿ V0, this is a good approximation.) Use this estimate of the
ground state energy in subsequent parts of the problem.

[Aside: the true ground state energy is lower than what you’ve estimated.
(You can show this, but that’s optional.) This means that the tunnelling
lifetime you estimate below is an underestimate.]

(b) Sketch the potential with E 6= 0 and explain why the ground state of the
E = 0 potential is no longer stable when E 6= 0.

(c) Use the semiclassical approximation to calculate the barrier penetration
factor for the ground state. [You should use the fact that eEd ¿ h̄2/2md2

to simplify this part of the problem.]

(d) Use classical arguments to convert the barrier penetration factor into an
estimate of the lifetime of the bound state.

(e) Now, lets put in numbers. Calculate the lifetime for V0 = 20 eV, d =
2 × 10−8 cm and an electric field of 7 × 104 V/cm. Compare the lifetime
you estimate to the age of the universe.

(f) Show that the lifetime goes like exp 1/E , and explain why this result means
that this “instability” could not be obtained in any finite order of pertur-
bation theory, treating E as a perturbation to the Hamiltonian.
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