Quantum Physics III (8.06) Spring 2006 Solution Set 1

February 14, 2006

For convenience we quote here the conversion formulae between cgs and natural units. From natural units to cgs we convert using

$$1c = 2.99792458 \times 10^{10} \text{ cm/sec},$$

 $1\hbar = 1.05457266 \times 10^{-27} \text{gm cm}^2/\text{sec},$ (1)
 $1\text{eV} = 1.602 \times 10^{-12} \text{gm cm}^2/\text{sec}^2.$

Conversely, from cgs to natural units we convert using

$$1\sec = 1.51926689 \times 10^{15} \frac{\hbar}{\text{eV}},$$

$$1\text{cm} = 5.06772886 \times 10^4 \frac{\hbar c}{\text{eV}},$$

$$1\text{gm} = 5.06958616 \times \frac{\text{eV}}{c^2}.$$
(2)

Also note that:

1 atmosphere = $1.01 \times 10^6 \text{ dynes/cm}^2 \text{ (cgs)} = 4.8 \times 10^3 \text{ eV}^4$

1. Natural units

(1 points for each correct answer)

The conductance ρ has dimensions of electric current divided by voltage. Therefore

$$[\rho] = [I/V] = [\text{charge}^2/(\mathcal{E} \ t)] = \frac{\hbar c}{\hbar} = c$$

where \mathcal{E} denotes energy.

The units for magnetic flux are those of magnetic field times area, we have

$$[\phi_B] = [Bl^2] = (\hbar c)^{1/2}.$$

Since $\mathcal{E} = \vec{\mu} \cdot \vec{B}$,

$$[\mu] = [\mathcal{E}/B] = eV^{-1} \, \hbar^{3/2} \, c^{3/2}$$

2. Magnetic Moments

(3 points)

$$\vec{\mu} \propto e \vec{S}$$

Introduce m, \hbar and c to fix the dimensions (work in natural units for convenience):

$$[e\vec{S}] = (\hbar c)^{1/2} \hbar = \hbar^{3/2} c^{1/2}$$

but

$$[\vec{\mu}] = eV^{-1} \hbar^{3/2} c^{3/2}.$$

Divide by mc to get the right dimension,

$$\left[\frac{e\vec{S}}{mc} \right] = eV^{-1} \, \hbar^{3/2} \, c^{3/2}.$$

Therefore,

$$\vec{\mu} = \frac{g}{2} \, \frac{e}{mc} \vec{S}$$

(2 point)

Using conversion formulae (1) we can write the conversion factor

$$1\frac{\text{eV}^2}{(\hbar c)^{3/2}} = \frac{1.602^2 \times 10^{-24}}{(2.99 \times 1.0510^{-17})^{3/2}} \frac{\text{gm}^{1/2}}{\text{cm}^{1/2}\text{sec}} = 14.51 \frac{\text{gm}^{1/2}}{\text{cm}^{1/2}\text{sec}}$$
(3)

therefore $10^5 \text{ gauss} = 6906.08 \text{ eV}^2 \, h^{-3/2} \, c^{-3/2}$

(3 points)

$$\Delta \mathcal{E} = \vec{\mu_{\uparrow}} \cdot \vec{B} - \vec{\mu_{\downarrow}} \cdot \vec{B} = 2\frac{g}{2} \frac{eB}{mc} \frac{\hbar}{2}$$

Now set $\hbar = c = 1$ and use $g \approx 2$, $e = 1/\sqrt{137}$ and m = 511 keV, to get

$$\Delta \mathcal{E} = 1.16 \times 10^{-3} \text{eV}$$

3. Electron-positron pair production by an electric field

(a) (3 points) In natural units $m_e c^2 = 511 \text{ keV}$ Therefore we have

$$E_0 = \frac{(m_e c^2)^2}{(\hbar c)^{3/2}} = (511 \times 10^3)^2 \frac{\text{eV}^2}{(\hbar c)^{3/2}}$$
$$= (511 \times 10^3)^2 \frac{e}{(\hbar c)^{1/2}} \frac{\text{Volts}}{\text{cm}} \frac{\text{eVcm}}{\hbar c}$$
$$= (511 \times 10^3)^2 \sqrt{\alpha} (5.07 \times 10^4) \frac{\text{Volts}}{\text{cm}}$$
$$= 1.13 \times 10^{15} \frac{\text{Volts}}{\text{cm}}$$

where α is fine structure constant and we have used the second equation in (2).

(b) (5 points) Imagine an electron traveling the distance $\delta x = c\delta t = \frac{\hbar c}{\delta \epsilon} = \frac{\hbar c}{2m_e c^2}$. The work done by the electric field \vec{E}_c is

$$\delta W = eE_c \delta x = \frac{eE_c \hbar c}{2m_c c^2}.$$

To compensate for the rest mass of the two electrons this work should equal to $2m_ec^2$. Therefore

$$E_c = \frac{4m_e^2 c^4}{e\hbar c} = 4\left(\frac{\hbar c}{e^2}\right)^{1/2} \frac{(m_e c^2)^2}{(\hbar c)^{3/2}} = \frac{4}{\alpha^{1/2}} E_0 \approx 46.8 E_0$$

where we recalled that $\alpha = e^2/\hbar c = 1/137$. Thus the ratio of the critical vacuum breakdown electric field to the electric field associated with the electron's rest energy is

$$\frac{E_c}{E_0} = \frac{4}{\sqrt{\alpha}} \approx 46.8.$$

Due to that the electromagnetic interaction is weak (i.e. $\alpha \ll 1$), it takes a larger electric field (with an additional factor $1/\sqrt{\alpha}$) to produce electron and positron pair than the naive guess $4E_0$.

4. The Bag Pressure

(a) (2 point) Since $[pR] = \hbar$ and [E] = [p]c, eliminating [p] we get $[E] = \hbar c/[R]$. Hence:

$$E(R) = \frac{3\hbar c}{R} + B \frac{4\pi R^3}{3}$$

(b) (5 points) Since $R = R_0$ minimizes E(R), therefore

$$\frac{dE(R)}{dR}\Big|_{R=R_0} = -\frac{3}{R_0^2} + 4\pi R_0^2 B = 0$$

$$\Rightarrow R_0 = \left(\frac{3}{4\pi B}\right)^{1/4}$$

Substitute R_0 back into E(R), to get M:

$$M = E(R_0) = 4\left(\frac{4\pi}{3}B\right)^{1/4}$$

(c) (4 points) Invert result of previous part, to get

$$B = \frac{3}{4\pi} \left(\frac{M}{4}\right)^4$$

Substitute for $M = 940 \,\mathrm{MeV}$ to obtain $B = 7.28 \times 10^8 \,\mathrm{MeV}^4$. Use $197 \,\mathrm{MeV} \,\mathrm{fm} = 1$ to get:

$$B = \frac{7.28 \times 10^8}{(197)^3} \frac{\text{MeV}}{\text{fm}^3} = 95 \,\text{MeV/fm}^3$$

(d) (1 point) The units of energy per unit volume and that of pressure are both

$$\frac{gm}{cm s^2} = \frac{eV^4}{(\hbar c)^3}$$

(e) (3 points) The bag constant B has units of energy density which, as we just demonstrated, is the same as pressure. We need to convert from natural units into CGS.

$$B = \frac{95 \,\text{MeV}}{\text{fm}^3} = 95 \frac{1.602 \times 10^{-6} \,\text{ergs}}{(10^{-13} \,\text{cm})^3} = 1.5 \times 10^{35} \,\text{dynes/cm}^2$$
$$= 1.5 \times 10^{29} \,\text{atm}.$$

This pressure is extraordinarily large—the strong force is very strong.

(f) (3 points) From result of part (c) $B = 0.48 \,\mathrm{fm}^{-4}$. Using expression of R_0 obtained in part (b), we get $R_0 = 0.84 \,\mathrm{fm}$. This value is just slightly smaller than 1 fm, which is typically the range of strong interactions.

5. The Accelerating Universe

(a) (3 points) The cosmological constant has the unit of an energy density. The natural scale for the cosmological constant Λ is thus $M_{\rm Plank}/L_{\rm Plank}^3$. $M_{\rm Plank}$ and $L_{\rm Plank}$ are the natural scales of mass and length in the unit system of \hbar , c and G_N , which are

$$M_{\rm Plank} = \sqrt{\frac{\hbar c}{G_N}}$$

$$L_{\rm Plank} = \sqrt{\frac{\hbar G_N}{c^3}}$$

We can now find the natural value of Λ :

$$M_{\rm Plank}/L_{\rm Plank}^3 = 2.9 \times 10^{126} {\rm eV/cm}^3$$

(b) (2 point) In Planck units, the observed value is $\Lambda = 6.9 \times 10^{-124}$, which is an extremely tiny number.

6. Fermi energy, velocity and temperature of copper

(a) (2 points) The Fermy energy of copper is

$$E_F = \frac{\hbar^2}{2m} (3\rho \pi^2)^{2/3}$$

where ρ is the number of free electrons per unit volume. For copper there is one free electron per atom, therefore

$$\rho = \frac{N_A d}{A} = \frac{8.96 \,\mathrm{g}m/\mathrm{c}m^3}{63.5 \,\mathrm{g}m/\mathrm{mole}} \,\frac{6.02 \times 10^{23} \,\mathrm{atoms}}{\mathrm{mole}} = 8.49 \times 10^{22} \,\mathrm{atoms/c}m^3$$

where N_A is the Avogadro's number, d is the density of copper and A is the atomic weight of copper. Substituting numbers we obtain

$$E_F \approx 7.1 eV \approx 1.12 \times 10^{-11} erg.$$

(b) (2 points)

The corresponding Fermi velocity can be found from the relationship $E_F = \frac{1}{2}mv_F^2$. We have

$$v_F = \sqrt{\frac{2E_F}{m}} = \sqrt{\frac{2 \times 7.1}{511 \times 10^3}} \ c = 5.3 \times 10^{-3} \ c = 1.57 \times 10^8 \text{cm/sec}$$

Since the Fermi velocity is much smaller than the speed of light we can safely assume that electrons in the copper crystal are nonrelativistic. Note that the obtained Fermi v_F velocity is

about c/137, i.e. is of order of e^2/\hbar , the electron velocity in hydrogen atom. This agrees with what one expects on dimensional grounds.

(c) (2 points) The Fermi temperature is given by

$$T_F = \frac{E_F}{k_B} \approx 81 \times 10^3 \text{K} = 7.1 \text{eV}.$$

Therefore we can approximate the electron gas to be at zero temperature.

(d) (2 points) The degeneracy pressure is

$$P = \frac{(3\pi^2)^{\frac{2}{3}}\hbar^2}{5m}\rho^{\frac{5}{3}} \approx 3.80 \times 10^{11} \frac{\text{gm}}{\text{cm sec}^2} \approx 3.8 \times 10^5 \text{atm}.$$