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1. Scattering from a Reflectionless Potential (10 points)

(a) (2 points) Plugging ¢(z) = Agegh(ax) into the Schrodinger equation, one finds that it is
hZa
T 2m -

an eigenstate with energy Ey = Since F < 0 and the potential goes zero as x — Fo00,

this is a bound state.

(b) (3 points) We now consider the wave function

Y(z) = (k/a + itanh(azx))e® (1)

Since
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i —k*1p — 2aksech”(az)e*™ — 2ia“e’™® tanh(ax)sech”(ax) = —(k° + 2a“sech”(ax))y,
we find
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This is true for any (real) k, so we have a continuum of scattering states 1.

(c¢) (3 points) In order to study scattering, we ask what happens to a plane wave sent in
from z = —oco. When the particle interacts with the potential, some of the wave will be
transmitted and some reflected, so that asymptotically the solution should reduce to (x —
—o0) = e*® + Re~%% on the left and ¥ (x — o0) = Te’*® on the right.

Now, look at solution (1). Since lim,_, tanh(az) = 1, we find

k+ia pika

b(x — o0) =

(2)

a

As x — —oo we find that

bla— —o0) = B gika

3)

Since there is no term proportional to e in (3), R must be zero. As a consistency check,
we now show |T'| = 1. To find T we take the ratio of the coefficients before ¢?** in (2) and (3)

(since (3) is not normalized in the standard form)
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From this expression we see that |T'| = 1— which we must have by flux conservation, as there

is no reflected wave.

(d) (2 points) As we can see from part (c), T'(k) has a pole 2at2 k =ia. In terms of energy,
hZa
2m °

the location of the pole is at the bound state energy, Fy = —




2. Simple Properties of Cross Sections (15 points)
(a) (2 points) The incident flux is
= hk
Si = —2Z,
m

while the scattered flux is (to leading order in 1/r)

2
o IkITE,
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(b) (2 points) Using part (a),
do ST I
a0 =1 =
deQ Jim B dA 2 rdS),

and therefore 92 = | f|2.

(c) (11 points) From conservation of probability, we must have [ V- Siyq = 0, and therefore
fStoml -dA = 0, with the integral is taken over the boundary of space. Now, Siptar =
S; + Ss + Sint, where

Sint = — [e’kzvfeﬂw + e*”"f—Ve““z —c.c.
2ma T r
hk1 -
= " Re [erMH)] (5 + 7).
mr

Let’s consider fStaml -dA = 0 term by term. The first term we consider is met -dA. The
easiest coordinate system to use is cylindrical coordinates, in which we take the boundary of
space to be two planes at z = +o0o. (You can check that the contribution to the integral from

p — oo is sub leading.) We have, then,

/ Simt - dA

where in the second line I have used the approximations
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Because at z = —o0, 2 = —#, there is no contribution from the plane at z = —oo. The plane

at z = oo contributes
4 L,
[ S = AT om0 = 02
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_ 4mhk lim da e~ [Ref(a — 0) COS(ka) — Imf(ﬂ = O) sin(k:a)]
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4mh
= —Wlmf(ﬂ =0).



The other two terms are simpler, as [V -.S; =0 and
hk
/Ss -dA = — [ dQ|f)?.
m

Conservation of flux then tells us

[ 170 = T (o).

. Born Approximations for Scattering from Yukawa and Coulomb Potentials (15
points)
(a) (6 points) The Yukawa potential is spherically symmetric, so f(0) = f% IS drrV(r)sinkr,

where k = |E — K |. The integral we need to perform is

1 [e—(utir)r —(p—ir)r
/dref“rsinnr = — ¢ — — c -
21 | p+ik W= 1K
B K
- MQ + :‘4}2 :
Using this,
2mp
FO) == 5
h(pu? + K?)

From this we find

= (rrrs)
Q= WG v a2))
The total cross-section is

2mp 2 1
= 2dQ) = ( ) / in 0dfd .
g /|f| K2 S ¢(,u2 + 4k? sin® £)2

To evaluate the 6 integral, make the variable change a = 4k sin?(0/2)/u?. Then the 6 integral
1 4K da 2
ez o Tha)? T AGATIRT)
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(b) (2 points) Putting 8 = @1Q2 and pu = 0, we find

do ( 2mQ1Q> )2 B (Q1Q2>2 1
dQ \2n%k2(1 —cosf))  \ 4E sin® /2’

which is precisely the Rutherford cross-section.

becomes and

(¢) (2 points) To prevent confusion, I will use the symbol T" for thickness. Since the number of
particles scattered per unit solid angle per unit time per scatterer is %%, and the number
density of scatterers is n, the number of particles scattered into unit solid angle per unit time
is [dA Tn%% = g—g%nf This is independent of beam area and beam uniformity, as
desired. The key point here is that the factors of area cancel independently for each area

element, so non uniformity of the beam is not an issue.



(d) (3 points) With the numbers

01 = 2 Qs = T9¢ 9:%
T = 10%n dQ = 10" *rads® E =8 MeV
N = pPAu/May =59 X 10%atoms/m?,

we find that the number of scattered alpha particles seen in the detector per second is 3.7.

(e) (2 points) The number of particles detected in the detector depends on 6 as

sin 0 (4)

sin*

[\GlS-)

where the second factor sinf comes from the solid angle. The quantity in (4) takes on the

following values:

3009 6 =10°
33 0 = 45°
0.97 0 = 135°
0.18 0 =170°.

When we took 6 = 90° and therefore % = 4, we found that there were 3.7 particles per

second scattered into the detector. Using this, the number of particles observed per second in

the detector at the various angular locations are

2784 6 =10°

30.5 0 = 45°
0.9 6 = 135°

0.16 6 =170°.

Note that the observed number of particles shoots up very sharply near § = 0.

. The Size of Nuclei (10 points)

(a) (4 points) Using the charge distribution p(r) = $22; for » < R and 0 otherwise, we find

37 |1
—singR — RcosqR]| ,

/r2dr sin 6d de e" Cosgp(r) = RTqQ p

and therefore
6mZe?

= W(Sin qR — qR COS qR)

The scattering cross-section is

do 9 6mZe? 2 . 9
@ = |f| = (W) (Slan-qRCthR) .
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Figure 1: The form factor F(¢R).

(b) (3 points) For a point particle, p(x) = Z3§3(r), so the scattering amplitude is fo =
2me?Z/(h?q*). We define the form factor
f

3
Falt) =7 = (qR)?

(singR — qR cos¢R).

We plot this function in figure 1.

(¢) (3 points) As 6 goes from 0 to 7, ¢ goes from 0 to 2E/(hc). In the relativistic regime,
qR = 228 in0/2, so if E/(hc) < 1/R, then ¢R < 1. In this regime,

h
F(gR) = (qz?)%)ff <qR—(qg)g—&-...—(qR—(q?)g-l-...))

1.

R

Since the form factor is unity, this means that in this regime there is no difference between the

scattering from a point particle and an object of size R < he/E.

If R=(2-7) x 107*m, then we need E ~ hc/(2 —7) x 107*m = 30 — 100 MeV in order

to resolve the finite size of the nucleus.



THE PROBLEMS BELOW SHOULD NOT BE HANDED IN. THEY WILL NOT
BE GRADED. THEY ARE INTENDED AS A STUDY GUIDE TO HELP YOU
UNDERSTAND SCATTERING THEORY AND THE GROVER ALGORITHM.
SOLUTIONS WILL BE PROVIDED.

. The Born Approximation in One Dimension (15 points)

(a) (6 points) We need to show that ¢(x) = 1/)0( )= 77k > ik‘z*“'V(xo)z[;(xo)dxo satisfies
the Schrodinger equation with eigenvalue % T Now,
82

@eik“’_y‘ = [2ik6(x — y) — k] e*l=vl,

SO
w0 h2k?
“am a2’ = om (% T / dy eV () (y >) V@)V ().

It is therefore easy to see that

[ h? 92

h2 k>
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(b) (5 points) Using () ~ Ae™®, the first Born approximation becomes
; A
¢($) ~ Aezkz _ 1m /d ezk|x y\V ) zky

We want to find the reflection coefficient, which as Griffiths defines it is R = |reflected wave|?/|incident wave|?

(since this problem comes from Griffiths, we will use his definitions for R and T in this prob-

lem). The reflected wave is the component of 1 that behaves like e=*% at x — —oco. Now, as

x — —00, |t —y| = y—x, and thus the coefficient of the reflected wave is — ‘;‘LEZL [ dy e** vV (y).

kT at & — —o0, and the coefficient

The incident wave is the component of 1) that behaves like e
of this piece of 1 is A. Therefore,

2
R=

o [ ayetv) )

(c) (4 points) First, we set V(z) = —ad(z). In this case, the integral in equation (5) becomes
— [dye**¥ad(y) = —a. The reflection coefficient is therefore R = % = % From this,
we find the first Born approximation to the transmission coefficient,

2

T=1-R=1-
2h°F
The exact answers are, defining w = %,
w 1
Rea;ac = 3 Tewac = 3
T w41 Tltw

so the first Born approximation has found the first term in an expansion of Reyact, Tezact

small w. Small w means that the strength of the potential (measured by «) is small compared



to the energy of the particle, and so this means that the Born approximation is good in the

weak scattering regime.

Second, we set V(z) = =V, when |z| < a and 0 otherwise. In this case, the integral of (5) is
Vo [, dy ety = —VO%(%Q). The reflection coefficient is then R = (55 Vo sin(2ka))27 and

the transmission coefficient is
v 2
T=1-R=1- (2§?sin(2ka)> .
The exact answer is

T = 1—|—V702sin2(2ka) _1~1— &‘in(Zk ) i
eract — 4E(E+V()) = 2Eb a

where the approximation holds when V/E < 1, that is, in the weak scattering regime. Again,
we have found the first term in the weak scattering expansion of the exact answer.

. Scattering from a Small Crystal (8 points)

(a) (4 points) In the first Born approximation, the scattering amplitude is given by the
formula f(0,¢) = —5%55 >, [d*re " v(r — X;). In order to proceed further, we Fourier

expand the scattering potential of the single atom, v(z) = [(27)3d3k e'* "v;. Plugging this

£0.0)= 525 > / (2m) 3k e / Preilabyr
& i

The integral over 7 yields a delta function, [ d®re~"4=%)" = (27)35%(q — k), which makes the

integration over k trivial, so that

f(9,q’>) = _#Uq (Z e—iq~X¢> .

The differential cross-section is given by

do m 2 —iq-X;
a - (27rh2) aff |2 e

Note that the last factor contains all the information about the crystal structure, in the form

in, we find

2

of the sum over atom positions X;, while the factor |v,|>contains all the information about the

individual atom potential.

(b) (4 points) Consider scattering from two atoms, separated by a distance d. Let the
incoming momentum be E, while the outgoing momentum is k'. Constructive interference will
occur when d- (k—k'") = d-q = 2mn, for some integer n. Taking the entire crystal into account,
constructive interference will occur when X; - ¢ = 27n, for all X;. (This is simply a fancy way

of defining a Bragg plane.) Now, if the scattered wave satisfies the condition X; - ¢ = 2mn,

then e~Xi =1, so that g—g o N2, where N is the number of atoms in the crystal; otherwise,
generically, the interference between scattered wave will lead to g—g ~ (. Thus, scattering

amplitudes are only large when the Bragg condition is satisfied.



7. Partial Waves (10 points)

(a) (1 point) Since the first term in f(#) is independent of 6, and the second term is propor-
tional to cos @, the partial waves that are active are / =0 and ¢ = 1.

(b) (3 points) Recalling the expansion f(6) = >_,(2¢ 4 1)Py(cos0) fi, we identify

fo = 1 'k
O 7 %k ko—k—ikD
o l sin 50
"k cosdy —isindy’
and therefore
. Tk
sin dg =

Vko = k)? + (Tk)?.
As k — 0, sindp =~ dp =~ (I'/ko)k. This goes like k, as we expect.

For ¢ = 1, we have
1 2iBk> - 3
fi = e sin(26k?)
1 .
= 7 sin 611,
and therefore
61 = 20k3.
This goes to 0 as k2, again as we expect.
(¢) (1 point) The differential cross-section is

do
o | fo+ 3cos0f1[?

_ 1 (Tk)? 9 2p.2 3
= G b2+ (TR + 73 oS 0sin*(20k7)
6cos®  Thksin(26k%)

R (ko — k)2 + (TR)

5 ((ko — k) cos(28k”) — Tk sin(26k%)) .

(d) (1 point) The partial wave cross-sections are

oo

70 T %2 (ko — k)2 + (Tk)2
4,

o1 = ﬁsm2(25k3).

(e) (2 points) If Bk3 < 1, and k ~ ko, then 0; < 09, and we can approximate oyoa; =~ 0.

In other words,
AnT?

Ttotal = T T R2 1 (TR)Z

(f) (2 points) we should find o1 + oo = 2ZImf(# = 0). We calculate

Im f(0) = % o = gfl e T 3sin?(20k%) | .




On the other hand, the total cross-section is

4 (Tk)?
01+00= 75

k2 | (ko — k)2 + (Tk)2

+ 3sin?(26k*)
We conclude that the optical theorem is satisfied.

. Combining Born and Partial Waves (6 points)

(a) (no points) We recall from the previous problem set that the scattering amplitude for the

Yukawa potential is fy (0) = _rﬁ(fﬂ#ﬁ@?)? where k = 2k sin(6/2).

(b) (4 points) We need to subtract the quantity f = ;= [ sin6dfd¢fy () = — th52 —sin6do __

4k2 - 2 6
1-‘,—72 sin? 3

Making the variable substitution a = 4!%2 sin? g, we find

mp (4k2 + ,u2)
In .

I = e 12

Therefore, the modified scattering amplitude is

1 _1ln<4k2+u2>
p? +4k2sin® § 4k2 w2

2m
h2

fmod = -

(c) (2 points) Adding back in an unknown s-wave contribution, the scattering amplitude is
1 L <4k2 +u2>
——In|———
p? +4k%sin® . 4k2 12

1 1 4k? + p?
) = o2 | sl ae M\ e
ne+ sin® 3 o

2
2mB3\ > 1 1 4k% 4 p?
+ K2 2 4k2.'2ﬁ_@1n 2
ne + sin” 3 17

. Scattering from a J-shell (13 points)

now
2mp
-

1 .
£(0) = 5y (e~ 1)

This leads to the differential cross-section

do sin®8y  sin(28) 2mp

(a) (1 point) With r < R, the potential vanishes, so the solution is simply the free solution.
We have the boundary condition that u(r) =0 at r = 0, which determines u(r) = Asin(kr).

(b) (2 points) From integrating the Schrodinger equation, we have the equation

ou R+-e A
AR
aT Ree Ru( )7
or in other words
L
U | Rte UlR—e B R
Using our solution for u(r), this becomes
A
t(kR+ §) — cot(kR) = —. 6
cot(kR + 6) — cot(kR) = > ©
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Figure 2: The phase shift J.

(c¢) (2 points) We know that § — 0 as k — 0, so that we can take both kR <« 1 and
kR 4+ 6 < 1. In this case, the result of part (b) becomes

oA
KR+6 kR KR’

A

Using limy_.g d = —ka, this determines
A
=R|—— .
¢ <A+1)

(d) (8 points) We plot § as a function of kR in figure 1. We can understand this plot as

or

Notice that, when A > 1, a ~ R.

follows. Consider equation (6). There are three regimes: first, when cot(kR + §) > 1; second,
when cot(kR + 0) = 0; third, when cot(kR + ) < —1.

In the second case, we have ﬁ + cot(kR) = 0, which is possible when kR = 7 — ¢, where € is
a calculable small quantity. Also, if cot(kR + §) = 0, then kR + 0 = 7. Combining these, we
find 0 = -3 +e.

In the first case, we now know that kR € [0, 7 — €]. The condition that cot(kR + ) > 0 then
tells us —kR < 6 < § — kR. Moreover, for most values of kR, we will have cot(kR) < ﬁ, SO

that we expect in general § ~ —kR. (This is the same physics as the result of part (c) above
that for small k, § ~ —kR.)

In the third case, kR € [r — e,m]. The condition that cot(kR + §) < 0 now tells us that
57— kR<d<m—kR,or =5 +¢€ <0 <e Note also that if kR = 7, then 6 = 0.

Putting all of this together, we arrive at figure 1. The first half of the rapid increase by =

occurs when the phase shift makes the transition from the 6 ~ —kR regime to 6 = —3 +¢; the

10



10.

k2 Si gm0

kR

Figure 3: The s-wave cross-section.

second half of the rapid increase occurs when § increases from the value at resonance to § =0

at kR = w. The function §(k) is not quite periodic, because the term ﬁ is not periodic. As
kR increases, this term becomes less important, and therefore the regions where § increases
rapidly become larger.

%

The s-wave cross-section is op = sin?§, and is plotted in figure 2. The corresponding

quantity for hard sphere scattering is of/® = %2 sin?(kR). But as we showed, § ~ —kR,
HS
90

except near nr (or for kR > )\, a regime we are not considering). Therefore, oy ~ , except

near kR = nm, where an infinitely deep square well has bound states.

The resonances, visible as spikes in the cross-section in figure 2, therefore correspond to bound
states (strictly speaking, quasi-bound states) of the potential.

Ramsauer-Townsend Effect (6 points)

(a) (3 points) We get the s-wave phase shift directly from the Schrodinger equation. When
r < a, we have
u’ + (k2 + 2mV0h2) u=u" + k*u=0.

The solution for this which is appropriate for the boundary condition at r = 0 is u = A sin(kr).

When r > a, the Schrodinger equation is u” + k*u = 0, and the solution is u = Bsin(kr + 4).
Asking that the wave function be continuous at r = a yields the condition

ka ka
tan(ka)  tan(ka +6)’

In order for the cross-section to vanish as k — 0, we need lim,_od = 0. When k£ = 0, then

ka = 7, and the condition above becomes

v 1
tan -y

11



11.

Figure 4: Graphical solution to v = tan~y.

To solve this graphically, see figure 3. The points of intersection are the solutions. The first
two solutions are v = 4.4934 and v = 7.7253.

(b) (3 points) For a bound state, E < 0, and the wave function must fall off outside the well

as u = Be™*". Redefining x? = 2752 — k2, the solution inside the well is still u = Asin(xr).
The continuity condition is now
Ka
= —ka.
tan(ka)

When k = 0, at threshold, this condition becomes 7/tany = 0. This is solved by v =
(2n + 1)7/2. From figure 3, it is clear that (2n + 1)7/2 > +,,, where =, is the nth solution to
v = tan~y. Since v ox v/Vp, we conclude that a square well that displays an exact Ramsauer-
Townsend effect must be made slightly deeper to have a bound state at threshold.

Scattering in the Semi-classical Approximation (4 points)

The WKB approximation gives the wave function to be u(k,r) ~ % sin ¢ for p(r)dr, where

p=+2m(E—-V), and E = h;’ff. We have determined the phase of the wave function by
asking that u(r = 0) = 0.

Asymptotically, this wave function becomes u(r — oo, k) = <= sin } for_)oc p(r)dr, or

NG
o 2mV
u(r — 00, k) = sin kr+/ dr (g/kQ— 7;;2 —l{:)] .
0
(We have dropped the factor % as it limits to a constant.) We therefore conclude

o) [ (e - ).

12



12. A Semiclassical Analysis of Resonant Scattering (13 points)

(a) (1 point) In the classically allowed region, the WKB wave function is u(r) = % sin £ [o p(r)dr.

(b) (3 points) For generic values of E, the wave function in the forbidden region a < r < b

will contain both exponentially growing and exponentially falling terms. Therefore,

| Aoutsidel N e% fab dr/2m(V—E) > 1.

|Ainside| -

(¢) (4 points) For values of E close to (quasi-) bound states of the potential, the coefficient
of the exponentially growing term in the forbidden region will vanish. A quick glance at the

connection formulae tells us that the condition for this to happen is

1 [ ™
cos (ﬁ/o drp(r) — 4) =0,

/Oadr (B = V) = (mi) h

for n =0,1,2,.... At these special values of E, since the wave function dies off exponentially

or

as it travels through the barrier, |A;nside| > |Aoutside|-
(d) (5 points) Qualitatively, we expect the phase shift § to increase by 7 as we go through

a resonance. We can indeed see this in the semiclassical approximation: at resonance, the
forbidden region wave function is proportional to a dying exponential only, so in the classically
allowed region r > b, the wave function goes like u(r) o< sin (# [ drp(r) — 2%). On the other
hand, when the forbidden region wave function is proportional to a growing exponential only,
the wave function in the classically allowed region > b goes like u(r) o< sin (+ [ drp(r) — ).
Thus, § goes through a net shift of 7 as it cycles through a quasibound state, as the phase
must increase from that determined by a growing exponential to that determined by a dying
exponential at the resonance, and then back to that determined by a growing exponential. This
seems like a net phase shift of 27 until we recall that in the WKB approximation, the overall
sign of the wave function is not determined; so we really have a phase shift of . Because
the phase shift increases by 7, it must at some point in this evolution pass through the value
(2n + 1)7/2. This leads to a peak in the cross-section, given by sin®d, at the location of the

resonance.

13. The Grover Algorithm

(a) Consider the unitary transformation that maps the state |0) into the state %(|1> +10)).

This is a 45°rotation on the two-dimensional Hilbert space spanned by [0) and |1), and is
1 -1

represented by the matrix V = % 1 1 . Now we need to extend this to a matrix

acting on the full, 8-dimensional Hilbert space. The rotation of spin three by 45° rotates |0)

into %(|O> + [4)), |1) into %(|1> + |5)), and so on. The matrix representing this action on

13



the full Hilbert space is

1000 -1 0 0 O
0100 0 -1 0 O
0010 o 0 -1 0
1 0001 0 0 0 -1
V3 = —
V21 1.0 0 0 1 0O 0 O
01 0 0 O 1 0 0
001 0 0 O 1 0
0001 0 0 O 1

Similarly, V5 rotates the second spin by the same angle and therefore connects |0) and %(|0> +

|2}), etc., and has the matrix representation

10 -1 0 0O0 O O
601 0 -1.00 0 O
1 0 1 0 00 O O
1 01 0 1 00 0 O
Vo= — )
V2100 0 0 1 0 -1 0
00 0 0 01 0 -1
00 0 0 1 0 1 0
00 0 0 01 0 1

while V7 rotates the first spin by the same angle and has the representation

1 =10 0 0 0 0 0

1 1.0 0 0 0 0 0

0 0 1 -10 0 0 0

t1]lo o0 1 1 0 0 0 O
Vi=—

v2l o o o o 1 -1 0 0

00 0 0 1 1 0 0

0O 0 0 0 0 0 1 -1

00 0 0 0 0 1 1

(From these, we can calculate Ujpitiaiize = Va3V2V1 (notice that the order of the three V; does

not matter, as the matrices commute). This yields

-1 -1 1 -1 1 1 -1
1 -1 -1 -1 -1 1
-1 1 -1 -1 1 -1 1

1
Uinitialize = ﬁ

1
1
1
1
1 -1 -1 1
1
1
1

This matrix is unitary and maps |0) into |s), by construction.

14



(b) The operator (—1)f has the matrix representation (—1)/ = Diag[1,1,1,-1,1,1,1,1].

(c) The matrix elements of Uy are (Us)pn = (r] (2]s)(s| — 1) |n) = L —

) ) ) )

0rn. Explicitly, this is

4
-3 1 1 1 1 1 1 1
1 -3 1 1 1 1 1 1
1 1 -3 1 1 1 1 1
1 1 1 1 -3 1 1 1 1
U, ==
4 1 1 1 1 -3 1 1 1
1 1 1 1 1 -3 1 1
1 1 1 1 1 1 -3 1
1 1 1 1 1 1 1 -3
(d) Let |outy) = (Us(—l)f)k |s). For the lowest values of k, this is
louto) = |s)
|out, ) L 15,1100
ou = TS\t by by by Ly by
|outs) L oS a1, —1, =1, -1, —1)
ou = =" 4HL L4 y Ly Ly T
louts) LI T Y A S
ou = —F——=\—,—(,— — =y, —(,—
3 \/§8 ) ) ) ) ) ) )

The probability of obtaining |3) in a measurement is

e

125
781
945
330

k=
k=

k=2
k=3

Thus k = 2 is the optimal choice for finding the outcome |3).
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