
Quantum Physics III (8.06) Spring 2006
Solution Set 10

May 12, 2006

1. Scattering from a Reflectionless Potential (10 points)

(a) (2 points) Plugging ψ0(x) = Asech(ax) into the Schrodinger equation, one finds that it is
an eigenstate with energy E0 = − h̄2a2

2m . Since E < 0 and the potential goes zero as x → ±∞,
this is a bound state.

(b) (3 points) We now consider the wave function

ψ(x) = (k/a + i tanh(ax))eikx (1)

Since

∂2ψ

∂x2
= −k2ψ − 2aksech2(ax)eikx − 2ia2eikx tanh(ax)sech2(ax) = −(k2 + 2a2sech2(ax))ψ,

we find

Hψ = − h̄2

2m

[−k2ψ − 2a2sech2(ax)ψ
]− h̄2a2

m
sech2(ax)ψ

=
h̄2k2

2m
ψ.

This is true for any (real) k, so we have a continuum of scattering states ψk.

(c) (3 points) In order to study scattering, we ask what happens to a plane wave sent in
from x = −∞. When the particle interacts with the potential, some of the wave will be
transmitted and some reflected, so that asymptotically the solution should reduce to ψ(x →
−∞) = eikx + Re−ikx on the left and ψ(x →∞) = Teikx on the right.

Now, look at solution (1). Since limx→∞ tanh(ax) = 1, we find

ψ(x →∞) =
k + ia

a
eikx (2)

As x → −∞ we find that

ψ(x → −∞) =
k − ia

a
eikx (3)

Since there is no term proportional to e−ikx in (3), R must be zero. As a consistency check,
we now show |T | = 1. To find T we take the ratio of the coefficients before eikx in (2) and (3)
(since (3) is not normalized in the standard form)

T =
k + ia

k − ia
= 1.

From this expression we see that |T | = 1— which we must have by flux conservation, as there
is no reflected wave.

(d) (2 points) As we can see from part (c), T (k) has a pole at k = ia. In terms of energy,
the location of the pole is at the bound state energy, E0 = − h̄2a2

2m .
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2. Simple Properties of Cross Sections (15 points)

(a) (2 points) The incident flux is
~Si =

h̄k

m
ẑ,

while the scattered flux is (to leading order in 1/r)

~Ss =
h̄k

m

|f |2
r2

r̂.

(b) (2 points) Using part (a),

dσ

dΩ
dΩ = lim

r→∞
Ss · r̂
|Si| dA =

|f |2
r2

r2dΩ,

and therefore dσ
dΩ = |f |2.

(c) (11 points) From conservation of probability, we must have
∫ ∇·Stotal = 0, and therefore∫

Stotal · dA = 0, with the integral is taken over the boundary of space. Now, Stotal =
Si + Ss + Sint, where

Sint =
h̄

2mi

[
e−ikz∇f

r
eikr + e−ikr f∗

r
∇eikz − c.c.

]

=
h̄k

m

1
r
Re

[
feik(r−z)

]
(ẑ + r̂).

Let’s consider
∫

Stotal · dA = 0 term by term. The first term we consider is
∫

Sint · dA. The
easiest coordinate system to use is cylindrical coordinates, in which we take the boundary of
space to be two planes at z = ±∞. (You can check that the contribution to the integral from
ρ →∞ is sub leading.) We have, then,

∫
Sint · dA =

h̄k

m

∫
dφ ρdρ

1
r
Re

[
feik(r−z)

]
(ẑ + r̂) · ẑ

' h̄k

m

∫
dφ ρdρ

1
z
Re

[
f(θ = 0)eikρ2/2z

]
(ẑ ± ẑ) · ẑ,

where in the second line I have used the approximations

r̂ ' ±ẑ,

r = |z|+ ρ2

2|z| + . . . ,

θ ' 0.

Because at z = −∞, ẑ = −r̂, there is no contribution from the plane at z = −∞. The plane
at z = ∞ contributes∫

Sint · dA =
4πh̄k

mz

∫
ρdρ Re

[
f(θ = 0)eikρ2/2z

]

=
4πh̄k

m

∫
da Re

[
f(θ = 0)eika

]

=
4πh̄k

m
lim
α→0

∫
da e−αa [Ref(θ = 0) cos(ka)− Imf(θ = 0) sin(ka)]

= −4πh̄

m
Imf(θ = 0).
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The other two terms are simpler, as
∫ ∇ · Si = 0 and

∫
Ss · dA =

h̄k

m

∫
dΩ|f |2.

Conservation of flux then tells us
∫
|f |2dΩ =

4π

k
Imf(0).

3. Born Approximations for Scattering from Yukawa and Coulomb Potentials (15
points)

(a) (6 points) The Yukawa potential is spherically symmetric, so f(θ) = − 2m
h̄2κ

∫∞
0

dr rV (r) sin κr,
where κ = |~k − ~k′|. The integral we need to perform is

∫
dr e−µr sin κr =

1
2i

[
e−(µ+iκ)r

µ + iκ
− e−(µ−iκ)r

µ− iκ

]

=
κ

µ2 + κ2
.

Using this,

f(θ) = − 2mβ

h̄2(µ2 + κ2)
.

From this we find
dσ

dΩ
=

(
2mβ

h̄2(µ2 + κ2)

)2

.

The total cross-section is

σ =
∫
|f |2dΩ =

(
2mβ

h̄2

)2 ∫
sin θdθdφ

1
(µ2 + 4k2 sin2 θ

2 )2
.

To evaluate the θ integral, make the variable change a = 4k2 sin2(θ/2)/µ2. Then the θ integral
becomes 1

2µ2k2

∫ 4k2/µ2

0
da

(1+a)2 = 2
µ2(µ2+4k2) , and

σ =
4π

µ2 + 4k2

(
2mβ

h̄2µ

)2

=
4π

h̄2µ2 + 8mE

(
2mβ

h̄µ

)2

.

(b) (2 points) Putting β = Q1Q2 and µ = 0, we find

dσ

dΩ
=

(
2mQ1Q2

2h̄2k2(1− cos θ)

)2

=
(

Q1Q2

4E

)2 1
sin4 θ/2

,

which is precisely the Rutherford cross-section.

(c) (2 points) To prevent confusion, I will use the symbol T for thickness. Since the number of
particles scattered per unit solid angle per unit time per scatterer is dσ

dΩ
d2N
dtdA , and the number

density of scatterers is n, the number of particles scattered into unit solid angle per unit time
is

∫
dATn dσ

dΩ
d2N
dtdA = dσ

dΩ
dN
dt nT . This is independent of beam area and beam uniformity, as

desired. The key point here is that the factors of area cancel independently for each area
element, so non uniformity of the beam is not an issue.
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(d) (3 points) With the numbers

Q1 = 2e Q2 = 79e θ =
π

2
T = 10−6m dΩ = 10−4rads2 E = 8 MeV

n = ρAu/mAu = 5.9× 1028atoms/m3,

we find that the number of scattered alpha particles seen in the detector per second is 3.7.

(e) (2 points) The number of particles detected in the detector depends on θ as

1
sin4 θ

2

sin θ (4)

where the second factor sin θ comes from the solid angle. The quantity in (4) takes on the
following values:

3009 θ = 10o

33 θ = 45o

0.97 θ = 135o

0.18 θ = 170o.

When we took θ = 90o and therefore sin θ
sin4 θ/2

= 4, we found that there were 3.7 particles per
second scattered into the detector. Using this, the number of particles observed per second in
the detector at the various angular locations are

2784 θ = 10o

30.5 θ = 45o

0.9 θ = 135o

0.16 θ = 170o.

Note that the observed number of particles shoots up very sharply near θ = 0.

4. The Size of Nuclei (10 points)

(a) (4 points) Using the charge distribution ρ(r) = 3Z
4πR3 for r ≤ R and 0 otherwise, we find

∫
r2dr sin θdθ dφ eiqr cos θρ(r) =

3Z

R3q2

[
1
q

sin qR−R cos qR

]
,

and therefore

f =
6mZe2

h̄2q2(qR)3
(sin qR− qR cos qR).

The scattering cross-section is

dσ

dΩ
= |f |2 =

(
6mZe2

h̄2q2(qR)3

)2

(sin qR− qR cos qR)2.
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Figure 1: The form factor F (qR).

(b) (3 points) For a point particle, ρ(x) = Zδ3(r), so the scattering amplitude is f0 =
2me2Z/(h̄2q2). We define the form factor

F (qR) =
f

f0
=

3
(qR)3

(sin qR− qR cos qR).

We plot this function in figure 1.

(c) (3 points) As θ goes from 0 to π, q goes from 0 to 2E/(h̄c). In the relativistic regime,
qR = 2ER

h̄c sin θ/2, so if E/(h̄c) ¿ 1/R, then qR ¿ 1. In this regime,

F (qR) =
3

(qR)3

(
qR− (qR)3

6
+ . . .−

(
qR− (qR)3

2
+ . . .

))

' 1.

Since the form factor is unity, this means that in this regime there is no difference between the
scattering from a point particle and an object of size R ¿ h̄c/E.

If R = (2 − 7) × 10−15m, then we need E ' h̄c/(2 − 7) × 10−15m = 30 − 100 MeV in order
to resolve the finite size of the nucleus.
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THE PROBLEMS BELOW SHOULD NOT BE HANDED IN. THEY WILL NOT
BE GRADED. THEY ARE INTENDED AS A STUDY GUIDE TO HELP YOU
UNDERSTAND SCATTERING THEORY AND THE GROVER ALGORITHM.
SOLUTIONS WILL BE PROVIDED.

5. The Born Approximation in One Dimension (15 points)

(a) (6 points) We need to show that ψ(x) = ψ0(x)− im
h̄2k

∫∞
−∞ eik|x−x0|V (x0)ψ(x0)dx0 satisfies

the Schrodinger equation with eigenvalue h̄2k2

2m . Now,

∂2

∂x2
eik|x−y| =

[
2ikδ(x− y)− k2

]
eik|x−y|,

so

− h̄2

2m

∂2

∂x2
ψ =

h̄2k2

2m

(
ψ0 − im

h̄2k2

∫
dy eik|x−y|V (y)ψ(y)

)
− ψ(x)V (x).

It is therefore easy to see that
[
− h̄2

2m

∂2

∂x2
+ V (x)

]
ψ(x) =

h̄2k2

2m
ψ(x).

(b) (5 points) Using ψ0(x) ' Aeikx, the first Born approximation becomes

ψ(x) ' Aeikx − Aim

h̄2k

∫
dy eik|x−y|V (y)eiky.

We want to find the reflection coefficient, which as Griffiths defines it is R = |reflected wave|2/|incident wave|2
(since this problem comes from Griffiths, we will use his definitions for R and T in this prob-
lem). The reflected wave is the component of ψ that behaves like e−ikx at x → −∞. Now, as
x → −∞, |x−y| = y−x, and thus the coefficient of the reflected wave is −Aim

h̄2k

∫
dy e2ikyV (y).

The incident wave is the component of ψ that behaves like eikx at x → −∞, and the coefficient
of this piece of ψ is A. Therefore,

R =
∣∣∣∣

m

h̄2k

∫
dy e2ikyV (y)

∣∣∣∣
2

. (5)

(c) (4 points) First, we set V (x) = −αδ(x). In this case, the integral in equation (5) becomes
− ∫

dy e2ikyαδ(y) = −α. The reflection coefficient is therefore R = m2α2

h̄4k2 = mα2

2h̄2E
. From this,

we find the first Born approximation to the transmission coefficient,

T = 1−R = 1− mα2

2h̄2E
.

The exact answers are, defining w = mα2

2h̄2E
,

Rexact =
w

w + 1
, Texact =

1
1 + w

,

so the first Born approximation has found the first term in an expansion of Rexact, Texact in
small w. Small w means that the strength of the potential (measured by α) is small compared
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to the energy of the particle, and so this means that the Born approximation is good in the
weak scattering regime.

Second, we set V (x) = −V0 when |x| < a and 0 otherwise. In this case, the integral of (5) is
−V0

∫ a

−a
dy e2iky = −V0 sin(2ka)

k . The reflection coefficient is then R =
(

m
h̄2k2 V0 sin(2ka)

)2, and
the transmission coefficient is

T = 1−R = 1−
(

V0

2E
sin(2ka)

)2

.

The exact answer is

Texact =
(

1 +
V 2

0

4E(E + V0)
sin2(2ka)

)−1

' 1−
(

V0

2E
sin(2ka)

)2

where the approximation holds when V0/E ¿ 1, that is, in the weak scattering regime. Again,
we have found the first term in the weak scattering expansion of the exact answer.

6. Scattering from a Small Crystal (8 points)

(a) (4 points) In the first Born approximation, the scattering amplitude is given by the
formula f(θ, φ) = − m

2πh̄2

∑
i

∫
d3r e−iq·rv(r − Xi). In order to proceed further, we Fourier

expand the scattering potential of the single atom, v(x) =
∫

(2π)−3d3k eik·xvk. Plugging this
in, we find

f(θ, φ) = − m

2πh̄2

∑

i

∫
(2π)−3d3k vkeik·Xi

∫
d3r e−i(q−k)·r.

The integral over r yields a delta function,
∫

d3r e−i(q−k)·r = (2π)3δ3(q− k), which makes the
integration over k trivial, so that

f(θ, φ) = − m

2πh̄2 vq

(∑

i

e−iq·Xi

)
.

The differential cross-section is given by

dσ

dΩ
=

(
m

2πh̄2

)2

|vq|2
∣∣∣∣∣
∑

i

e−iq·Xi

∣∣∣∣∣

2

.

Note that the last factor contains all the information about the crystal structure, in the form
of the sum over atom positions Xi, while the factor |vq|2contains all the information about the
individual atom potential.

(b) (4 points) Consider scattering from two atoms, separated by a distance ~d. Let the
incoming momentum be ~k, while the outgoing momentum is ~k′. Constructive interference will
occur when d ·(k−k′) = d ·q = 2πn, for some integer n. Taking the entire crystal into account,
constructive interference will occur when Xi · q = 2πn, for all Xi. (This is simply a fancy way
of defining a Bragg plane.) Now, if the scattered wave satisfies the condition Xi · q = 2πn,
then e−iq·Xi = 1, so that dσ

dΩ ∝ N2, where N is the number of atoms in the crystal; otherwise,
generically, the interference between scattered wave will lead to dσ

dΩ ' 0. Thus, scattering
amplitudes are only large when the Bragg condition is satisfied.
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7. Partial Waves (10 points)

(a) (1 point) Since the first term in f(θ) is independent of θ, and the second term is propor-
tional to cos θ, the partial waves that are active are ` = 0 and ` = 1.

(b) (3 points) Recalling the expansion f(θ) =
∑

`(2` + 1)P`(cos θ)f`, we identify

f0 =
1
k

Γk

k0 − k − ikΓ

=
1
k

sin δ0

cos δ0 − i sin δ0
,

and therefore
sin δ0 =

Γk√
(k0 − k)2 + (Γk)2

.

As k → 0, sin δ0 ' δ0 ' (Γ/k0)k. This goes like k, as we expect.

For ` = 1, we have

f1 =
1
k

e2iβk3
sin(2βk3)

=
1
k

sin δ1e
iδ1 ,

and therefore
δ1 = 2βk3.

This goes to 0 as k3, again as we expect.

(c) (1 point) The differential cross-section is

dσ

dΩ
= |f0 + 3 cos θf1|2

=
1
k2

(Γk)2

(k0 − k)2 + (Γk)2
+

9
k2

cos2 θ sin2(2βk3)

−6 cos θ

k2

Γk sin(2βk3)
(k0 − k)2 + (Γk)2

(
(k0 − k) cos(2βk3)− Γk sin(2βk3)

)
.

(d) (1 point) The partial wave cross-sections are

σ0 =
4π

k2

(Γk)2

(k0 − k)2 + (Γk)2

σ1 =
4π

k2
sin2(2βk3).

(e) (2 points) If βk3
0 ¿ 1, and k ' k0, then σ1 ¿ σ0, and we can approximate σtotal ' σ0.

In other words,

σtotal ' 4πΓ2

(k0 − k)2 + (Γk)2
.

(f) (2 points) we should find σ1 + σ0 = 4π
k Imf(θ = 0). We calculate

Imf(0) =
1
k

[
(Γk)2

(k0 − k)2 + (Γk)2
+ 3 sin2(2βk3)

]
.
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On the other hand, the total cross-section is

σ1 + σ0 =
4π

k2

[
(Γk)2

(k0 − k)2 + (Γk)2
+ 3 sin2(2βk3)

]

We conclude that the optical theorem is satisfied.

8. Combining Born and Partial Waves (6 points)

(a) (no points) We recall from the previous problem set that the scattering amplitude for the
Yukawa potential is fY (θ) = − 2mβ

h̄2(µ2+κ2)
, where κ = 2k sin(θ/2).

(b) (4 points) We need to subtract the quantity f̄ = 1
4π

∫
sin θ dθdφfY (θ) = − mβ

h̄2µ2

∫
sin θdθ

1+ 4k2

µ2 sin2 θ
2

.

Making the variable substitution a = 4k2

µ2 sin2 θ
2 , we find

f̄ = − mβ

2h̄2k2
ln

(
4k2 + µ2

µ2

)
.

Therefore, the modified scattering amplitude is

fmod = −2mβ

h̄2

[
1

µ2 + 4k2 sin2 θ
2

− 1
4k2

ln
(

4k2 + µ2

µ2

)]
.

(c) (2 points) Adding back in an unknown s-wave contribution, the scattering amplitude is
now

f(θ) =
1

2ik
(e2iδ0 − 1)− 2mβ

h̄2

[
1

µ2 + 4k2 sin2 θ
2

− 1
4k2

ln
(

4k2 + µ2

µ2

)]
.

This leads to the differential cross-section

dσ

dΩ
=

sin2 δ0

k2
− sin(2δ0)

k

2mβ

h̄2

[
1

µ2 + 4k2 sin2 θ
2

− 1
4k2

ln
(

4k2 + µ2

µ2

)]

+
(

2mβ

h̄2

)2
[

1
µ2 + 4k2 sin2 θ

2

− 1
4k2

ln
(

4k2 + µ2

µ2

)]2

.

9. Scattering from a δ-shell (13 points)

(a) (1 point) With r < R, the potential vanishes, so the solution is simply the free solution.
We have the boundary condition that u(r) = 0 at r = 0, which determines u(r) = A sin(kr).

(b) (2 points) From integrating the Schrodinger equation, we have the equation

∂u

∂r

∣∣∣∣
R+ε

R−ε

=
λ

R
u(R),

or in other words
u′

u

∣∣∣∣
R+ε

− u′

u

∣∣∣∣
R−ε

=
λ

R
.

Using our solution for u(r), this becomes

cot(kR + δ)− cot(kR) =
λ

kR
. (6)
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Figure 2: The phase shift δ.

(c) (2 points) We know that δ → 0 as k → 0, so that we can take both kR ¿ 1 and
kR + δ ¿ 1. In this case, the result of part (b) becomes

1
kR + δ

− 1
kR

=
λ

kR
,

or

δ = kR

(
− λ

1 + λ

)
.

Using limk→0 δ = −ka, this determines

a = R

(
λ

λ + 1

)
.

Notice that, when λ À 1, a ' R.

(d) (8 points) We plot δ as a function of kR in figure 1. We can understand this plot as
follows. Consider equation (6). There are three regimes: first, when cot(kR + δ) À 1; second,
when cot(kR + δ) = 0; third, when cot(kR + δ) ¿ −1.

In the second case, we have λ
kR + cot(kR) = 0, which is possible when kR = π − ε, where ε is

a calculable small quantity. Also, if cot(kR + δ) = 0, then kR + δ = π
2 . Combining these, we

find δ = −π
2 + ε.

In the first case, we now know that kR ∈ [0, π − ε]. The condition that cot(kR + δ) > 0 then
tells us −kR < δ < π

2 − kR. Moreover, for most values of kR, we will have cot(kR) ¿ λ
kR , so

that we expect in general δ ∼ −kR. (This is the same physics as the result of part (c) above
that for small k, δ ' −kR.)

In the third case, kR ∈ [π − ε, π]. The condition that cot(kR + δ) < 0 now tells us that
π
2 − kR < δ < π − kR, or −π

2 + ε < δ < ε. Note also that if kR = π, then δ = 0.

Putting all of this together, we arrive at figure 1. The first half of the rapid increase by π

occurs when the phase shift makes the transition from the δ ∼ −kR regime to δ = −π
2 + ε; the
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Figure 3: The s-wave cross-section.

second half of the rapid increase occurs when δ increases from the value at resonance to δ = 0
at kR = π. The function δ(k) is not quite periodic, because the term λ

kR is not periodic. As
kR increases, this term becomes less important, and therefore the regions where δ increases
rapidly become larger.

The s-wave cross-section is σ0 = 4π
k2 sin2 δ, and is plotted in figure 2. The corresponding

quantity for hard sphere scattering is σHS
0 = 4π2

k2 sin2(kR). But as we showed, δ ' −kR,
except near nπ (or for kR > λ, a regime we are not considering). Therefore, σ0 ' σHS

0 , except
near kR = nπ, where an infinitely deep square well has bound states.

The resonances, visible as spikes in the cross-section in figure 2, therefore correspond to bound
states (strictly speaking, quasi-bound states) of the potential.

10. Ramsauer-Townsend Effect (6 points)

(a) (3 points) We get the s-wave phase shift directly from the Schrodinger equation. When
r ≤ a, we have

u′′ +
(
k2 + 2mV0h̄

2
)
u ≡ u′′ + κ2u = 0.

The solution for this which is appropriate for the boundary condition at r = 0 is u = A sin(κr).

When r > a, the Schrodinger equation is u′′ + k2u = 0, and the solution is u = B sin(kr + δ).
Asking that the wave function be continuous at r = a yields the condition

κa

tan(κa)
=

ka

tan(ka + δ)
.

In order for the cross-section to vanish as k → 0, we need limk→0 δ = 0. When k = 0, then
κa = γ, and the condition above becomes

γ

tan γ
= 1.
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Figure 4: Graphical solution to γ = tan γ.

To solve this graphically, see figure 3. The points of intersection are the solutions. The first
two solutions are γ = 4.4934 and γ = 7.7253.

(b) (3 points) For a bound state, E < 0, and the wave function must fall off outside the well
as u = Be−kr. Redefining κ2 = 2mV0

h̄2 − k2, the solution inside the well is still u = A sin(κr).
The continuity condition is now

κa

tan(κa)
= −ka.

When k = 0, at threshold, this condition becomes γ/ tan γ = 0. This is solved by γ =
(2n + 1)π/2. From figure 3, it is clear that (2n + 1)π/2 > γn, where γn is the nth solution to
γ = tan γ. Since γ ∝ √

V0, we conclude that a square well that displays an exact Ramsauer-
Townsend effect must be made slightly deeper to have a bound state at threshold.

11. Scattering in the Semi-classical Approximation (4 points)

The WKB approximation gives the wave function to be u(k, r) ' A√
p sin 1

h̄

∫ r

0
p(r)dr, where

p =
√

2m(E − V ), and E = h̄2k2

2m . We have determined the phase of the wave function by
asking that u(r = 0) = 0.

Asymptotically, this wave function becomes u(r →∞, k) = A√
k

sin 1
h̄

∫ r→∞
0

p(r)dr, or

u(r →∞, k) = sin

[
kr +

∫ ∞

0

dr

(√
k2 − 2mV

h̄2 − k

)]
.

(We have dropped the factor A√
k

as it limits to a constant.) We therefore conclude

δ(k) =
∫ ∞

0

dr

(√
k2 − 2mV

h̄2 − k

)
.
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12. A Semiclassical Analysis of Resonant Scattering (13 points)

(a) (1 point) In the classically allowed region, the WKB wave function is u(r) = A√
p sin 1

h̄

∫ r

0
p(r)dr.

(b) (3 points) For generic values of E, the wave function in the forbidden region a < r < b

will contain both exponentially growing and exponentially falling terms. Therefore,

|Aoutside|
|Ainside| ' e

1
h̄

∫ b

a
dr
√

2m(V−E) À 1.

(c) (4 points) For values of E close to (quasi-) bound states of the potential, the coefficient
of the exponentially growing term in the forbidden region will vanish. A quick glance at the
connection formulae tells us that the condition for this to happen is

cos
(

1
h̄

∫ a

0

drp(r)− π

4

)
= 0,

or ∫ a

0

dr
√

2m(E − V ) =
(

n +
3
4

)
πh̄

for n = 0, 1, 2, . . .. At these special values of E, since the wave function dies off exponentially
as it travels through the barrier, |Ainside| À |Aoutside|.
(d) (5 points) Qualitatively, we expect the phase shift δ to increase by π as we go through
a resonance. We can indeed see this in the semiclassical approximation: at resonance, the
forbidden region wave function is proportional to a dying exponential only, so in the classically
allowed region r > b, the wave function goes like u(r) ∝ sin

(
1
h̄

∫
drp(r)− 3π

4

)
. On the other

hand, when the forbidden region wave function is proportional to a growing exponential only,
the wave function in the classically allowed region r > b goes like u(r) ∝ sin

(
1
h̄

∫
drp(r)− π

4

)
.

Thus, δ goes through a net shift of π as it cycles through a quasibound state, as the phase
must increase from that determined by a growing exponential to that determined by a dying
exponential at the resonance, and then back to that determined by a growing exponential. This
seems like a net phase shift of 2π until we recall that in the WKB approximation, the overall
sign of the wave function is not determined; so we really have a phase shift of π. Because
the phase shift increases by π, it must at some point in this evolution pass through the value
(2n + 1)π/2. This leads to a peak in the cross-section, given by sin2 δ, at the location of the
resonance.

13. The Grover Algorithm

(a) Consider the unitary transformation that maps the state |0〉 into the state 1√
2
(|1〉 + |0〉).

This is a 45orotation on the two-dimensional Hilbert space spanned by |0〉 and |1〉, and is

represented by the matrix V = 1√
2

(
1 −1
1 1

)
. Now we need to extend this to a matrix

acting on the full, 8-dimensional Hilbert space. The rotation of spin three by 45o rotates |0〉
into 1√

2
(|0〉 + |4〉), |1〉 into 1√

2
(|1〉 + |5〉), and so on. The matrix representing this action on

13



the full Hilbert space is

V3 =
1√
2




1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1




.

Similarly, V2 rotates the second spin by the same angle and therefore connects |0〉 and 1√
2
(|0〉+

|2〉), etc., and has the matrix representation

V2 =
1√
2




1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1




,

while V1 rotates the first spin by the same angle and has the representation

V1 =
1√
2




1 −1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 1 1




.

¿From these, we can calculate Uinitialize = V3V2V1 (notice that the order of the three Vi does
not matter, as the matrices commute). This yields

Uinitialize =
1√
3




1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1
1 1 1 1 1 1 1 1




.

This matrix is unitary and maps |0〉 into |s〉, by construction.
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(b) The operator (−1)f has the matrix representation (−1)f = Diag[1, 1, 1,−1, 1, 1, 1, 1].

(c) The matrix elements of Us are (Us)rn = 〈r| (2|s〉〈s| − 1) |n〉 = 1
4 − δrn. Explicitly, this is

Us =
1
4




−3 1 1 1 1 1 1 1
1 −3 1 1 1 1 1 1
1 1 −3 1 1 1 1 1
1 1 1 −3 1 1 1 1
1 1 1 1 −3 1 1 1
1 1 1 1 1 −3 1 1
1 1 1 1 1 1 −3 1
1 1 1 1 1 1 1 −3




.

(d) Let |outk〉 =
(
Us(−1)f

)k |s〉. For the lowest values of k, this is

|out0〉 = |s〉
|out1〉 =

1√
8

1
2
(1, 1, 1, 5, 1, 1, 1, 1)

|out2〉 =
1√
8

1
4
(−1,−1,−1, 11,−1,−1,−1,−1)

|out3〉 =
1√
8

1
8
(−7,−7,−7, 13,−7,−7,−7,−7)

The probability of obtaining |3〉 in a measurement is

P3 =





.125 k = 0

.781 k = 1

.945 k = 2

.330 k = 3

Thus k = 2 is the optimal choice for finding the outcome |3〉.
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