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1. Eigenstates of the ”Translation” Operator in tight-banding model (5 points)

We want to find a state
|θ〉 =

∑

n∈Z
cn|n〉

such that
T |θ〉 = e−iθ|θ〉.

Acting with T on |θ〉 we have

T |θ〉 = T
∑

n∈Z
cn|n〉 =

∑

n∈Z
cn|n + 1〉 =

∑

n∈Z
cn−1|n〉.

So we we see that
cn−1 = e−iθcn

and therefore
cn = einθc0.

The coefficient c0 is a free parameter which we can set to 1. Thus

|θ〉 =
∑

n∈Z
einθ|n〉 (1)

Appendix: energy eigenvalues

Let us find the energy eigenvalues directly using (1) ( an alternative way from that discussed
in lecture). Acting with hamiltonian H on |θ〉 and collecting terms together we have

H|θ〉 =
∑

n∈Z
einθ(E0 −∆eiθ −∆e−iθ) |n〉

= (E0 − 2∆cos θ)
∑

n∈Z
einθ|n〉

= (E0 − 2∆cos θ) |θ〉.

Therefore the energy of |θ〉 is
Eθ = E0 − 2∆ cos θ.

2. Relativistic degenerate electron gas (10 points)

The dispersion relation between the energy and momentum of the ultrarelativistic particles is

E = c~k.

At zero temperature the particles fill all the energy levels up to the Fermi energy εF .
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The density of particles in momentum space, with energies below Fermi level is given by1.

2V
d3k

(2π)3
.

Thus, the total energy of such a gas is the integral

Etot = 2V

∫ kF

0

d3k

(2π)3
c~k =

8πV c~
(2π)3

∫ kF

0

k3dk = 2πV c~
k4

F

(2π)3
.

The total number of particles is given by

N = 2V

∫ kF

0

d3k

(2π)3
=

8πV

(2π)3

∫ kF

0

k2dk =
8πV

3
k3

F

(2π)3
.

Therefore
Etot =

3
4
Nc~kF =

3
4
NεF .

3. White dwarfs, Neutron stars and Black holes (10 points)

In this problem we treat the star in a constant density approximation ignoring selfconsistency
which leads to a more complicated density profile. In parts a and b we assume the particles
are nonrelativistic.

The equilibrium point for the white dwarf may be found from the energy balance. The zero
point energy of the electron gas in the white dwarf is balanced against the gravitational energy.
Let’s compute both energies. Consider a thin layer of thickness dr. The mass of this layer is

dM(r) = M
dV

V
= M

4πr2dr
4
3πR3

= 3M
r2dr

R3

the mass of concentrated within the radius r is

M(r) = M
r3

R3
.

The gravitational potential energy is given by

Egrav =
∫ R

0

−GN
M(r)dM(r)

r
= −3GNM2

R6

∫ R

0

r4dr = −3GNM2

5R

The energy of the degenerate electron gas is

Egas = 2V

∫ kF

0

d3k

(2π)3
~2k2

2me
=

1
(2π)3

4π~2V

me

∫ kF

0

k4dk =
~2k5

F V

10π2me
(2)

The value of kF is determined from the normalization condition

N = 2V

∫ kF

0

d3k

(2π)3
=

2
(2π)3

4πk3
F

3
(3)

1we use the wavevector instead of momentum, ~p = ~~k.
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where N is the total number of electrons in the star equal to

N = f
M

mp
(4)

where f = 1/2 is the number of electrons per nucleon in the carbon atom and mp is proton
(and neutron) mass. From (3), (4) we find

kF =
(3π2fM

mpV

)1/3

=
1
R

(9πfM

4mp

)1/3

. (5)

Plugging this back into (2) we find

Egas =
2~2

15πme

1
R2

(9πfM

4mp

)5/3

(6)

Summarizing the calculation, the total energy of the system can be written as

Etot = − a

R
+

b

R2

where

a =
3GNM2

5
, b =

2~2

15πme

(9πfM

4mp

)5/3

. (7)

The white dwarf’s radius may be obtained by minimizing the total energy. The extremal
points are determined from

∂Etot

∂R
=

a

R2
− 2b

R3
= 0.

The solution
Rwhite dwarf =

2b

a
= 7496 km

is the radius of the dwarf. In fact it is very close to the Earth radius (a coincidence of course).

The ratio of the mass densities of the white dwarf and the sun is

ρwhite dwarf

ρSun
=

(
RSun

Rwhite dwarf

)3

= 8.14× 105.

(b) In a neutron star the pressure is so great that the electrons have merged with protons to
form neutrons, so we may assume that the star consists entirely from neutrons. The formula
(7) holds if we replace me with mp and use f = 1. The radius of the neutron star with the
mass of the sun is

Rneutron star = 13.5 km.

The neutron Fermi energy is

EF =
~2k2

F

2m
=

~2

2mR2

(9πfM

4mp

)2/3

.

To find if the neutrons in the neutron star should be treated as relativistic particles we calculate
the ration of the Fermi energy to the rest energy of the neutron

EF

mpc2
= 0.054,

3



thus the neutrons are nonrelativistic.

(c) The quantity
MGN

c2

has dimensions of length. Since it is the only quantity with the dimension of length which can
be constructed out of GN ,M and c it should therefore equal to the Schwarzschild radius up to
a numerical constant. Thus we estimate

rs ∼ MGN

c2
≈ 1.48 km.

4. The Dirac comb (10 points)

The reversed Dirac comb potential is

V (x) = −α

N−1∑

j=0

δ(x− ja)

When we make the periodic delta function potential attractive instead of repulsive, we find
that the allowed energies (when E > 0) are determined through the equation

cos(Ka) = cos(ka)− mα

~2k
sin(ka), (8)

where k =
√

2mE/~. We only need to change the sign of α, the strength of Delta function, in
Griffiths 2nd ed. eqn. (5.64). Using non-dimensional variables z ≡ ka and β ≡ mαa/~2, we
rewrite right hand side of above equation as

f(z) ≡ cos(z)− β
sin(z)

z
. (9)

We plot it for β = 1 in figure 1 and β = 3 in figure 2. For the bands for which f(z) varies from
−1 to +1, i.e. cos(Ka) varies from −1 to +1, hence K varies from 0 to 2π/a and therefore band
contains N states. In β = 1 case (fig.1) first allowed band has N/2 states because f(z) varies
from 0 to −1, hence K varies from π/2a to 3π/2a. For β = 3, in all bands f(z) varies from −1
to +1 thus the bands contain N states each. Band gaps slowly decrease for subsequent bands.
For 0 < β < 1 we will have more states in the first band and for 1 < β ≤ 2, less states. For
β > 2 (for example β = 3) we will have N states in all bands but first band won’t start with
k = 0. See figure 2.

Since we have an attractive Dirac comb we can also have negative energy states or bound
states i.e. E < 0. The negative energy solution within the first cell is

ψ(x) = Ae−kx + Bekx, (0 < x < a)

where

k =
√−2mE

~
.

By the Bloch theorem the solution in the cell immediately to the left is

ψ(x) = e−iKa[Ae−k(x+a) + Bek(x+a)], (−a < x < 0).
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Figure 1: f(z) for β = 1.
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Figure 2: f(z) for β = 3.
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The wave function ψ(x) at the spike point at x = 0 is continuous, therefore

A + B = e−iKa(Ae−ka + Beka)

and the derivative of the wave function has a jump because of the delta function

ψ′(x + 0)− ψ′(x− 0) = −2mα

~2
ψ(0)

which becomes
k(B −A)− e−iKak(Beka −Ae−ka) = −2mα

~2
(B + A).

Collecting the terms near A and B we can write the boundary conditions as

A(1− e−iKa−ka) + B(1− e−iKa+ka) = 0

A
(
1− e−iKa−ka − 2mα

~2k

)−B
(
1− e−iKa+ka +

2mα

~2k

)
= 0

This is a system of two linear equations with two unknowns and zero right hand side. To have
a non-zero solution the determinant of the system must be zero. Therefore we have

(
1− e−iKa−ka

)(
1− e−iKa+ka +

2mα

~2k

)
+

(
1− e−iKa+ka

)(
1− e−iKa−ka − 2mα

~2k

)
= 0.

Expanding the brackets and collecting terms with the same power of e−iKa we obtain

2e−2iKa + 2− e−iKa

(
2eka + 2e−ka +

2mα

~2K
(e−ka − eka)

)

Multiplying both sides by 1
4eiKa we obtain

cosKa = cosh ka− mα

~2k
sinh ka (10)

The solution to (10) exists if the right hand side is less than one. Let’s denote z = ka, β = mαa
~2

and the the r.h.s. of (10) as h(z, β). Then

h(z, β) = cosh z − β
sinh z

z
(11)

[NOTE: We can obtain the same result by substituting k → −ik in eqn. (8).] The condition

|h(z, β)| = 1 (12)

determines the boundaries of allowed zones.

For negative energies we have only one allowed band, which can be full or partial depending
on the value of β. For β ≥ 2 we will have N states in the band and for β < 2 we will have
less than N states. At β = 1, there are exactly N/2 states in this band. Band moves farther
away from E = 0 and becomes narrower as β increases beyond 2 (for example β = 3). Now
combining the results, for the case β < 2, for positive and negative E we find that, the only
band for E < 0 and lowest band for E > 0 combine together and actually has exactly N states.
Hence the lowest band in the full spectrum is partially above and below E = 0 (see figure 4).
For β > 2 (for example β = 3) it is completely below E = 0. A rough picture of the energy
spectrum for β = 1 is shown in figure 4 and that for β = 3 in figure 5.

Note: For full credit students only need to make graphs for one value of β and
draw correct conclusions for that value.
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Figure 3: h(z) for β = 1 and β = 3.

5. Analysis of a general one-dimensional periodic potential

(a) (2 points) When we differentiate the Wronskian, we find

dW

dx
= ψ2ψ

′′
1 − ψ1ψ

′′
2 .

According to the Schrodinger equation, ψ′′1 = − 2m
~2 (E − v)ψ1, and similarly for ψ2. Therefore

dW

dx
= −2m

~2
(E − v)(ψ2ψ1 − ψ1ψ2) = 0.

(b) (2 points) First, we evaluate the Wronskian for x ≤ −a/2:

W (x ≤ −a/2) = −2ikrt∗.

For x ≥ a/2, on the other hand, we have

W (x ≥ a/2) = 2ikr∗t.

This tells us that (rt∗) = −(rt∗)∗, and therefore that rt∗ is pure imaginary.

(c) (8 points) The Bloch conditions on ψ and ψ′ yield the equations

A(eiKa + rei(k+K)a − teika) = B(1 + reika − tei(K+k)a)

A(eiKa − rei(k+K)a − teika) = B(−1 + reika + tei(K+k)a).

Dividing the first equation by the second yields

eiKa + rei(k+K)a − teika

eiKa − rei(k+K)a − teika
=

1 + reika − tei(K+k)a

−1 + reika + tei(K+k)a
.

Multiplying through by the denominators yields

(eiKa+rei(k+K)a−teika)(−1+reika+tei(K+k)a) = (1+reika−tei(K+k)a)(eiKa−rei(k+K)a−teika),
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Figure 4: Schematic sketch of the energy spectrum for β = 1.
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Figure 5: Schematic sketch of the energy spectrum for β = 3.
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which after expansion and canceling terms gives

eiKa(−1 + (r2 − t2)e2ika) + e2iKa(teika) + teika = 0.

Adjusting the phases and rearranging gives the desired answer,

cos(Ka) =
1
2t

(e−ika + (t2 − r2)eika). (13)

(d) (2 points) Using the parameterizations for r and t given in the problem set, we find
t2−r2

t = eiδ 1
|t| . Since 1

t = 1
|t|e

−iδ, equation (13) becomes

cos(Ka) =
cos(ka + δ)

|t| . (14)

(e) (6 points) We want to consider situations such that |t| ¿ 1. To be able to solve (14), we
must have cos(ka + δ) ≤ |t|. Since that means the cosine must be very small, its argument
must be near (n + 1/2)π, and therefore we can expand cos(ka + δ) ' |ka + δ − (n + 1/2)π|.
This means that the largest allowed value of k is given by

kmax =
1
a

(
(2n + 1)π

2
− δ + |t|

)
,

while the smallest allowed value of k is given by

kmin =
1
a

(
(2n + 1)π

2
− δ − |t|

)
.

The allowed range of energies is given by ~2(k2
max − k2

min)/2m, which is

∆E =
~2

2ma2

[(
(2n + 1)π

2
− δ + |t|

)2

−
(

(2n + 1)π
2

− δ − |t|
)2

]

=
2~2

ma2

(
(2n + 1)π

2
− δ

)
|t|,

which is proportional to |t|.
(f) (6 points) We now want to consider situations where |r| ¿ 1. In this case, the right hand
side of equation (14) is larger than one only when cos(ka + δ) ≥ |t| = (1 − |r|2/2). (We have
used the binomial expansion to simplify the relationship between |r| and |t|.) Since δ is very
small, we can drop it; expanding the cosine then gives us

|ka− nπ| ≤ |r|.

In this case the largest value of k satisfying the above (or the smallest value of allowed k above
nπ) is given by kmaxa = nπ + |r|, while the smallest value of k (or the largest value of allowed
k below nπ) is given by kmina = nπ − |r|. From this we find that the forbidden range of
energies is (to leading order in |r|)

∆E =
(
~2

2ma2
(n2π2 + 2|r|nπ)− ~2

2ma2
(n2π2 − 2|r|nπ)

)

=
2~2nπ|r|

ma2
. (15)
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Note that t, r and δ are all functions of k. In particular, we expect r to decrease fast with n,
i.e. faster2 than 1/n. Equation (15) then implies that the gaps become smaller and smaller as
n increases.

(g) (6 points) We now wish to make the above discussion a bit more concrete, and we take our
periodic potential to be an array of repulsive delta functions. To see what our above formulas
tell us about this case, we first need to solve for r and t. To do this, it is sufficient to consider
ψL and ψ′L at x = 0. Continuity of ψL at x = 0 tells us

1 + r = t. (16)

Meanwhile the continuity condition on ψ′L at 0 is modified by the delta function (use eqn.
(2.125) of Griffiths 2nd ed.) to give us

t− (1− r) =
2mα

ik~2
t. (17)

Recalling that t = |t|eiδ and r = ±i|r|eiδ, the imaginary part of (16) tells us that

±|r| cos δ = |t| sin δ,

while the real part gives us
∓|r| sin δ = |t| cos δ − 1.

Combining the two above equations tells us

|t| = cos δ.

Meanwhile, substituting r = t− 1 into (17) tells us that

t =
1− imα

~2k

1 +
(

mα
~2k

)2 .

Now cot δ = Re t
Im t , so from the above

cot δ = −~
2k

mα
.

When we plug these expressions for cot δ and |t| into equation (8) of the problem set, we find

cos(Ka) =
cos(ka) cos δ − sin(ka) sin δ

cos δ

= cos(ka) +
mα

~2k
sin(ka),

which is precisely the equation derived in Griffiths.

2For example, if n is large enough that the associated energy is above the barrier we expect r falls exponentially

with n.
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