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1. Classical motion in a Magnetic Field (10 points)
(a) (5 points) The Hamiltonian of the particle in the magnetic field is given by
1
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H(E,P) = 5—(F— 24)° + q9.

The first Hamilton’s equation is
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where v = . The second Hamilton’s equation is
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Using (1) we compute
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Plugging (4), (3) into (2) a we have
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(b) (5 points)

Consider a particle moving on a circle with constant speed v and angular velocity wy. We will
assume that ¢ > 0, B > 0. The radius of the circle, called cyclotron radius, is

R=v/wr.



The vector B pointing from the center of the circle to the particle is perpendicular to ¢ and
has length v/wy, and therefore
R=(-2 Y=
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where the correct choice of sign is determined by the right hand rule. Therefore
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. Gauge invariance and the Schrodinger equation (14 points)

(a) (4 points) In the unprimed gauge, we have the Schrodinger equation
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The Schrodinger equation in the primed gauge, written in terms of the unprimed quantities,
is
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Let us substitute 1 = exp(iqf(Z,t)/hc)y’ into eqn. (5). The right hand side becomes,
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hence for left hand side we get,
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Comparing the right hand sides of the equations (7) and (8) we precisely get the Schrodinger
equation in the primed gauge, eqn. (6) above. Therefore ¢’ given by eqn. (2) in the problem

set must be the solution of eqn. (6).

(b) (2 points) The inner product of ¢ with itself is (¢)|¢) = [ dzy*p = [dz(P')*¢" = '|¢).
The position dependent phase factor e~*4//"¢ does not change the norm of 1/1. Slmilarly, the
expectation value of z is (¢Y|z|¢) = [dray* = [dx (') = ('|x]y’).
(c¢) (5 points) The expectation value of p, is (¢|p.|Y) = fzhfdx w*g—w in the unprimed
gauge, but in the primed gauge we find
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In order to construct a gauge invariant quantity, we need to add something whose gauge
variation will cancel off the gauge variation of p, that we found above. This “something” is,
of course, the vector potential:
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Thus the kinetic momentum p, — g4, /c is a gauge invariant operator, while p, is not. The

above discussion applies without change to other components.

Let us take the gauge variation f(Z,t) = f(Z) to be time independent. In this case, the scalar

potential ¢ is now gauge invariant, as (by assumption) %{ = 0. Moreover, q¢ contains no

differential operators, so it is easy to conclude (Y|gp|v) = (¥'|qd|y’). Since p — q/f/c is a

gauge invariant operator, and therefore H = ﬁ(ﬁ — q/f/ ¢)? + q¢ is also gauge invariant.

[Note: Now suppose % # 0. In this case it is not true that (p|H|¢) = ('|H'|{'), as we can
easily demonstrate. Suppose, for simplicity, ¥ is an energy eigenstate of H with eigenvalue F.
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Thus H is not gauge invariant. When we make a time-dependent gauge transformation, we are

changing the zero of our energy scale, and therefore the energies that we measure do indeed
change. However, only energy differences are observable, and these are indeed gauge invariant
quantities: suppose we wish to measure the matrix element ($|x|@), where |@) = alw1) + B|2),
and |17 o) are eigenstates with eigenenergies Eq 2. We know that this matrix element is gauge
invariant. Let’s see what it works out to:
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All quantities on the right hand side of the above equation are known to be gauge invariant

except for e!(F2=E1t/h Byt since the left hand side must be gauge invariant, this tells us that

E5 — By must be a gauge invariant quantity.]

(d) (3 points) Since v, is eigenstate of Hamiltonian in unprimed gauge with eigenvalue E,,

therefore v, satisfies,
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Substitute v, = exp(iqf(Z)/hc)y, in the above equation to get,
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where in the last step we have used ¢’ = ¢, since f is time-independent. Canceling the phase
on both sides of the previous equation we see that 1)/, is an eigenstate of the Hamiltonian in
the primed gauge, with the same eigenvalue F,,.

. General aspects of quantum motion in a magnetic Field (15 points)
(a) (4 points) The commutator is easy to compute, since
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We see that when B # 0 the commutator [0;,0;] is proportional to the component of B

perpendicular to the 7j-plane.

The non-vanishing of the above commutators implies that the motions in different directions

are not commutative.

(b) (4 points) The commutator is
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where we used wy, = ¢B/mec.

We see, that the coordinates of the center of the particle’s rotation in magnetic field do not
commute. Therefore, although the coordinates of the particle itself may be observed simul-
taneously the coordinates of the center of the orbit cannot be observed at the same time.
This is similar to the fact that angular momentum components do not commute and thus the

particle’s wave function may only be the eigenstate of one of angular momentum components.

(c) (4 points) We have
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(d) (3 points) Recall that the Hamiltonian for the motion in x — y plane is given by

H= %m(@i +97) (10)
Since all the commutators in (9) vanish
[0, H] = 0,
[0, H] = 0.

Since zg and gy commute with the Hamiltonian but not with each other, we can eigenstates
of £y and H or of gy and H but not of all three.

Note: if we include an electric potential term ¢¢ in (10) then the commutators [z, H] and
[yo, H] may not vanish. The center of orbital rotation could drift due to electric force and xq

and yo may not be conserved any more.

. Electromagnetic current density in quantum mechanics (12 points)
(a) (6 points) From the Schrodinger equation, we have
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Subtracting the complex conjugate of the above equation from the equation itself, we have
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which can be further simplified to
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where we have used the gauge condition V-A=0. Thus,
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We have just derived the charge conservation equation starting from the Schrodinger equation.

(b) (2 points) It suffices to show that [S] = [1/(At)]. Now
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which is indeed units of inverse area times inverse time.

(c) (4 points) We now want to show that S is gauge invariant. In the primed gauge,
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5. Translation invariance in a uniform magnetic field (14 points)

(a) (2 points) Using the definition of ¢ from problem 3 and plugging the explicit expression

for A we have

where in the last step we used wy, = ¢B/mec. Similarly
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(b) (4 points) We take ¢ (z,y) to be an eigenfunction of H with eigenvalue E. We define
b(,y) = eaBobr/hey(z,y + b). Now
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Therefore, 1) is also an eigenfunction of H with eigenvalue E.

(¢) (3 points) U, = e#= is the usual translation operator and we have

Uath(,y) = *F (2, y) = Y(z + a,y). (11)

Note: The definition of translation operator used here, U, f(z) = f(x + a), differs by a sign

from what one obtains considering geometric translation @ — x + a, which transforms f(z) to
flx —a).

Since [py, Z] = 0 we have
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(d) (5 points) The commutator is
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The commutator vanishes if
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where ® = abB is the flux through the area ab and &y = hc/q is the quantum of flux.



