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1. Landau Levels: numerics (4 points) When B = 10 tesla, then the energy spacing hwy, is

given by
hor = heeB (197 x 1077 eVem) (300 x 10° eV /cm)
LT 511keV
= 12x10%eV.

In natural units the length ¢ is

h 1 he
by = =hey | ——— =41 x 1072
0 V mwr, C\/ mc2hwy, x 10 eV

Notice that this length is the inverse of the geometric average of the two energy scales of

the problem: the rest energy of the electron, and the cyclotron energy fwy. Finally, in cm,
fo = 8.0 x 10~ "cm.

2. Transformation between basis vectors of different gauges (12 points)

(a) (2 points) Consider the difference
A" — A = (By, Bz,0)
= _(azfa ayfa O)

The solution is easy to guess
f(z,y) = —Buy.

(b) (5 points) Consider (xg| in (yo| basis.
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To find (zo|yo) we consider the following equalities

(xolYlyo) = wo(zolvo) (2)
= 21(2)3$0<1‘0|y0> (3)

where in the first equality we act Y to the right and in the second equality we act Y to the
left. The right hand sides of equations (2) and (3) give rise to a differential equation for (xg|yo)
which can be solved by

o)
vz Yo
0

(olyo) = Ce

with C a constant of integration. Setting! C' = 21 = we find from (1)
o
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!The normalization constant C' can be fixed by requiring (zo|zf) = 5(zo — zf).



Alternatively, one can solve this problem by comparing the commutation relation [X, Y] = —il2
to the canonical commutator of momentum p and coordinate z, [p,z] = —ifi. We know from
8.05 that [p,x] = —ih implies p = —ifid/dx, which allows to translate all results of one particle
QM in d=1 to the Landau level problem in d=2. This is achieved by replacing p — X, x — Y,
h — 13, etc. After this identification, the relation we are seeking to establish in this problem
is nothing but the familiar (p| = Y e~ ?*/"(z|.

(c) (5 points) Consider the wavefunction of lowest energy eigenstate in the unprimed system:

1 T (yyg)?
Yo(z, y;90) = ce B e 7
(mig)*
__b 1{% /OO _dk_ eik(y*yo)*@ (5)
(mld)a —oo V2

Recall the formula for the delta function

/ R @=20) e = o §(x — 20 (6)
Now we plug (5) into the right hand side of equation (10) of psets 4, exchange the order of
integration and use (6) to compute the integrals:
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= LHS.

3. Landau levels in symmetric gauge (21 points)

(a) (3 points) Given that

thwy,
[z, vy] = —

the computation for the commutator [a, a!] is

m

T =
la,a'] 2wy

[y + Ty, vy — (V]



Now we check that H = hwy,(a'a + 3) is indeed the correct Hamiltonian:

1 1
th(aTa + 5) = hwy, <27;ZL (vg + UZ + i[vmvy]) + 2)
mu?
2

where we have used again (7).
(b) (4 points) Since p = —ih% we can write the the complex derivatives as

1 . P )
0, = 5(890 —i0y) = ﬁ(p:r — ipy)

1 . i )
0z = i(ax + Zay) = %(px + Zpy)
Also we observe that

A, —iA
sy AiA (9)
210 210 210 BZO
Plugging (8), (9) this in the right hand side of the desired relation we get

m .
a= ,/m(vac + ivy)

- m 1 q . .
=\ 2hwrm (fE(Aﬁ +iAy) + (ps + Zpy)>
oy (A, —iA, 1 _
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(c) (3 points) Plugging the definition of @ in the annihilation condition aly) = 0 we get

z
0 = — gt

This can be viewed as an ordinary differential equation for 1) with z as independent variable
and z as a parameter. The general solution is

U(z,2) = f(z)e *

where f(z) is an arbitrary function of z.
(d) (4 points) The basis of the ground state wave functions is
P = an”eiﬁ

We compute the normalization of v, by first going to the polar coordinates r, ¢. Then the

integral over ¢ is easily computed. To take the integral over r we perform another change of



variables p = r:

= TN2n!(203)" !
and therefore
N, = (ﬂn!2”+1l3”+2)_%.

Next we compute (1, |22 + 42|, ) by first noticing that 22 + y? = 2z, and second dividing by?
(tntbn)

Wn\JCQ + y2\¢n> = <wn|25|¢n>
(Vn|22]thn)

(Vnltn)
-2 () /23]

=2(n+1)I3.
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(e) (3 points) The contour plots of the probability densities |1, (z,y)|? for n = 0,4, 10 are

shown on the figures 1, 2 and 3 respectively

(f) (4 points) The angular momentum L in complex notations is
L =xpy —yps
- (-m)% (2 4 2)(0: — 82) + (2 — 2)(8: + 85))
=h (20, — 203) .

2We do it for convenience, this way we don’t need to keep trace of normalization constant, as it cancels out and

we can use the insight we got when we computed (Y |1)n)



Figure 1: [¢o(z,y)|? is simply a gaussian which has a peak at 0.



Figure 2: We see, that for n = 4 the probability to detect the particle is concentrated in the circular

area around th origin



Figure 3: The case of n = 10 is qualitatively similar to the n = 4 case, the radius of the ring grows
roughly linearly with n, which, in agreement with part (d)



Let us compute the commutator of angular momentum L with raising operator a'
ih _
[L,a'] = 7 [z@z — 203,

_ _j/f% ([zaz, ;J — [zaz,%az}>

z

2100z
210+ 0 ]

Similarly
[L,a] = —a.

The commutator of angular momentum with the Hamiltonian is
1
(L, H] =[L, hw (aa + 5)]

= hwy, ([L, a'la + a'[L, al)
=0.

Acting with L on ,, we obtain

Ly, = hN,, (20, — 20:)z"e

2Z
T
= hN,nz,e *o

= hnd}n .

. Counting States in the lowest Landau Level in the symmetric gauge (6 points)

(a) (3 points) The probability density is

P =277 [¢2 |dr
2
= 2r NP tle 23

Taking derivative with respect to r and setting it to zero we get

2

(2n+1) — max
lO

Therefore

Tmax = loV2n + 1

(b) (3 points) The largest value of ny.x allowed by the size of the material is determined

from
lovV2Nmax + 1 =~ R.
Therefore
N 1R? _ TR%qB 9
Nmax ~ 2 l% - hC - (I)O.



5. Coherent state in the symmetric gauge (12 points)

Note: In this problem we call the eigenstate of a as ¢g in order to avoid confusion with the

ground state eigenfunctions 1, defined in problem 3.

(a) (3 points) The eigenstate equation

.2
agy = —Zﬁol% (10)
0
simplifies to
z—z
0:b0 =~ =go.

As we did in problem 3 we view this as an ordinary differential equation for ¢o(z). The general

solution is
_ (2=20)(z—Z%g)

¢0(z,2) = f(z)e 45 (11)
where f(z) is an arbitrary function of z. Here and below, one gets full credit for any choice of
f(2).

(b) (3 points) Multiplying the wave function by it’s complex conjugate we have

_ (2=20)(2=29)
|0l* = f(2)%e %
_ (z—20)%+(y—y0)?

=|f(2)% &

(c) (5 points) This part count as extra bonus credit.

Since the Hamiltonian is time-independent, the wave function at time ¢ is given by
¢(t) _ efthqso.
In order to find ¢(t) we act with e~** on both sides of (10)

. . . 20
e thaethe th¢0:_Z e th¢0

V2

which leads to
a(=1)o(t) = —i—=—¢(t) (12)

where a(t) is the Heisenberg operator for a
a(t) = efltgeHE

Since a(t) satisfies the equation

da )
9 e H) = —i
g~ pleHl =i
we find that
a(—t) = el . (13)



Plugging (13) into (12) we get

' V2l
20(t)

—i
V2l

with

20(t) = e ™tz

¢(t) satisfies exactly the same equation as ¢ with zo replaced by zo(t) (compare with equation
(10)). Thus from (11)

(14)

6(t) = f(2) exp <_ (== 20(1))(2 — zOu))) |

402

(d) (1 point) Multiplying the answer to (c) by its complex conjugate we obtain

_ (z—zo<t>>2+2<y—yo<t>>2

() = |£(2)]% o

. Off-diagonal conductance in two dimensions (10 points)

(a) (3 points) Using the usual formula for the inverse of a 2 x 2 matrix, we write

_ 1 po  PH
0="9_"23 _ )
Po+ Pu PH PO

%+ P P8+ P

which gives us

g0

(b) (3 points) If py is non vanishing, then

. . £0
lim og = lim ———5 =0
po—0 0 po—0 p% + p%{

Thus we can have both o¢ and py equal to 0 in the presence of a non vanishing B field.

(¢) (4 points) In two dimensions, the current density is j = I/¢, that is, current per unit
length (rather than current per unit area, as in a three-dimensional sample). Therefore, the
equation defining the Hall resistance, Vi, = Rp 1., is the same information as E = pf. Notice
that Ey, =V, /L and j, = I, /L. Therefore:

E, E/L

Yy Yy
H=——= = = = RH-

Thus the Hall resistance of the sample does not depend on its dimensions. Alternatively, we
can give a more generic treatment (NOT required for full credit):

E: \ _ [ po —pu Jz
E, PH Po Jy 7

10



therefore, we can write,

.\ _ (w o0)\/[E
v, | 0 L E,
_ poW jz — paWjy,
paLjs + poLjy

I A I,
PH Po% Iy 7

which is the matrix equation of the form V = RI. Clearly, when py = 0, the resistance matrix
is independent of L/W.
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