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March 3, 2006

1. Landau Levels: numerics (4 points) When B = 10 tesla, then the energy spacing ~ωL is
given by

~ωL =
~ceB
mc2

=
(197× 10−7 eVcm)(300× 105 eV/cm)

511 keV
= 1.2× 10−3 eV.

In natural units the length `0 is

`0 =
√

~
mωL

= ~c
√

1
mc2~ωL

= 4.1× 10−2 ~c
eV

.

Notice that this length is the inverse of the geometric average of the two energy scales of
the problem: the rest energy of the electron, and the cyclotron energy ~ωL. Finally, in cm,
`0 = 8.0× 10−7cm.

2. Transformation between basis vectors of different gauges (12 points)

(a) (2 points) Consider the difference

~A′ − ~A = (By,Bx, 0)

= −(∂xf, ∂yf, 0).

The solution is easy to guess
f(x, y) = −Bxy.

(b) (5 points) Consider 〈x0| in 〈y0| basis.

〈x0| =
∫ +∞

−∞
dy0 〈x0|y0〉 〈y0| (1)

To find 〈x0|y0〉 we consider the following equalities

〈x0|Y |y0〉 = y0〈x0|y0〉 (2)

= il20∂x0〈x0|y0〉 (3)

where in the first equality we act Y to the right and in the second equality we act Y to the
left. The right hand sides of equations (2) and (3) give rise to a differential equation for 〈x0|y0〉
which can be solved by

〈x0|y0〉 = Ce
−i

x0
l20

y0

with C a constant of integration. Setting1 C = 1√
2πl20

we find from (1)

〈x0| = 1√
2πl20

∫ +∞

−∞
e
−i

x0
l20

y0〈y0|. (4)

1The normalization constant C can be fixed by requiring 〈x0|x′0〉 = δ(x0 − x′0).
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Alternatively, one can solve this problem by comparing the commutation relation [X,Y ] = −il20
to the canonical commutator of momentum p and coordinate x, [p, x] = −i~. We know from
8.05 that [p, x] = −i~ implies p = −i~d/dx, which allows to translate all results of one particle
QM in d=1 to the Landau level problem in d=2. This is achieved by replacing p → X, x → Y ,
~ → l20, etc. After this identification, the relation we are seeking to establish in this problem
is nothing but the familiar 〈p| = ∑

x e−ipx/~〈x|.
(c) (5 points) Consider the wavefunction of lowest energy eigenstate in the unprimed system:

ψ0(x, y; y0) =
1

(πl20)
1
4
e
− iy0x

l20 e−
(y−y0)2

2l0

=
l0

(πl20)
1
4
e
− iy0x

l20

∫ ∞

−∞

dk√
2π

eik(y−y0)− l20k2

2 (5)

Recall the formula for the delta function
∫ ∞

−∞
eik(x−x0)dk = 2πδ(x− x0) (6)

Now we plug (5) into the right hand side of equation (10) of psets 4, exchange the order of
integration and use (6) to compute the integrals:

RHS = e
ixy

l20

∫ ∞

−∞

dy0√
2πl20

e
ix0y0

l20
l0e

− iy0x

l20

(πl20)
1
4

∫ ∞

−∞

dk√
2π

eik(y−y0)− l20k2

2

=
1

(πl0)
1
4
e

ixy

l20

∫ ∞

−∞
eiky− l20k2

2 dk

(
1
2π

∫ ∞

−∞
dy0e

iy0

(
x0−x

l20
−k

))

=
1

(πl0)
1
4
e

ixy

l20

∫ ∞

−∞
δ

(
x0 − x

l20
− k

)
eiky− l20k2

2 dk

=
1

(πl0)
1
4
e

ix0y

l20
− (x0−x)2

2l20

= LHS.

3. Landau levels in symmetric gauge (21 points)

(a) (3 points) Given that

[vx, vy] =
i~ωL

m
. (7)

the computation for the commutator [a, a†] is

[a, a†] =
m

2~ωL
[vx + ivy, vx − ivy]

= −i
m

~ωL
[vx, vy]

= −i
m

~ωL
i
~ωL

m

= 1.
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Now we check that H = ~ωL(a†a + 1
2 ) is indeed the correct Hamiltonian:

~ωL(a†a +
1
2
) = ~ωL

(
m

2~ωL

(
v2

x + v2
y + i[vx, vy]

)
+

1
2

)

=
m~v2

2

where we have used again (7).

(b) (4 points) Since ~p = −i~ ∂
∂~x we can write the the complex derivatives as

∂z =
1
2
(∂x − i∂y) =

i

2~
(px − ipy)

∂z̄ =
1
2
(∂x + i∂y) =

i

2~
(px + ipy) (8)

Also we observe that
z

2l0
=

x

2l0
+ i

y

2l0
=

Ay − iAx

Bl0
(9)

Plugging (8), (9) this in the right hand side of the desired relation we get

a =
√

m

2~ωL
(vx + ivy)

=
√

m

2~ωL

1
m

(
−q

c
(Ax + iAy) + (px + ipy)

)

=
l0√
2

(−Ax − iAy

Bl20
+

1
~
(px + ipy)

)

= − i√
2
(

z

2l0
+ 2l0∂z̄)

(c) (3 points) Plugging the definition of a in the annihilation condition a|ψ〉 = 0 we get

∂z̄ψ = − z

4l20
ψ.

This can be viewed as an ordinary differential equation for ψ with z̄ as independent variable
and z as a parameter. The general solution is

ψ(z, z̄) = f(z)e
− zz̄

4l20

where f(z) is an arbitrary function of z.

(d) (4 points) The basis of the ground state wave functions is

ψn = Nnzne
− zz̄

4l20

We compute the normalization of ψn by first going to the polar coordinates r, φ. Then the
integral over φ is easily computed. To take the integral over r we perform another change of
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variables ρ = r2:

1 = 〈ψn|ψn〉 =
N2

n

2

∫
dzdz̄(zz̄)ne

− zz̄

2l20

= N2
n

∫ ∞

0

∫ 2π

0

drdφr2n+1e
− r2

2l20

= πN2
n

∫ ∞

0

dρρne
− ρ

2l20

= πN2
n(−1)n ∂n

∂αn

(∫ ∞

0

e−αρdρ

) ∣∣∣∣∣
α= 1

2l20

= πN2
n(−1)n+1 ∂n

∂αn

(
1
α

) ∣∣∣∣∣
α= 1

2l20

= πN2
nn!(2l20)

n+1

and therefore
Nn = (πn!2n+1l2n+2

0 )−
1
2 .

Next we compute 〈ψn|x2 + y2|ψn〉 by first noticing that x2 + y2 = zz̄, and second dividing by2

〈ψn|ψn〉

〈ψn|x2 + y2|ψn〉 = 〈ψn|zz̄|ψn〉

=
〈ψn|zz̄|ψn〉
〈ψn|ψn〉

= −
[

∂n+1

∂αn+1

(
1
α

) /
∂n

∂αn

(
1
α

)] ∣∣∣∣∣
α= 1

2l20

= 2(n + 1)l20.

(e) (3 points) The contour plots of the probability densities |ψn(x, y)|2 for n = 0, 4, 10 are
shown on the figures 1, 2 and 3 respectively

(f) (4 points) The angular momentum L in complex notations is

L = xpy − ypx

= (−i~)
i

2
((z + z̄)(∂z − ∂z̄) + (z − z̄)(∂z + ∂z̄))

= ~ (z∂z − z̄∂z̄) .

2We do it for convenience, this way we don’t need to keep trace of normalization constant, as it cancels out and

we can use the insight we got when we computed 〈ψn|ψn〉
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Figure 1: |ψ0(x, y)|2 is simply a gaussian which has a peak at 0.
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Figure 2: We see, that for n = 4 the probability to detect the particle is concentrated in the circular
area around th origin
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Figure 3: The case of n = 10 is qualitatively similar to the n = 4 case, the radius of the ring grows
roughly linearly with n, which, in agreement with part (d)
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Let us compute the commutator of angular momentum L with raising operator a†

[L, a†] = − i~√
2

[
z∂z − z̄∂z̄,

z

2l0
+ 2l0∂z̄

]

= − i~√
2

([
z∂z,

z

2l0

]
− [z̄∂z̄, 2l0∂z̄]

)

= − i~√
2

(
z

2l0
+ 2l0∂z̄

)

= ~a†.

Similarly
[L, a] = −a.

The commutator of angular momentum with the Hamiltonian is

[L,H] =[L, ~ωL(a†a +
1
2
)]

= ~ωL

(
[L, a†]a + a†[L, a]

)

= 0.

Acting with L on ψn we obtain

Lψn = ~Nn(z∂z − z̄∂z̄)zne
− zz̄

4l20

= ~Nnnzne
− zz̄

4l20

= ~nψn.

4. Counting States in the lowest Landau Level in the symmetric gauge (6 points)

(a) (3 points) The probability density is

P = 2πr|ψ2
n|dr

= 2πN2
nr2n+1e

− r2

2l20

Taking derivative with respect to r and setting it to zero we get

(2n + 1)− r2
max

l20
= 0.

Therefore
rmax = l0

√
2n + 1

(b) (3 points) The largest value of nmax allowed by the size of the material is determined
from

l0
√

2nmax + 1 ≈ R.

Therefore

nmax ≈ 1
2

R2

l20
=

πR2qB

hc
=

Φ
Φ0

.
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5. Coherent state in the symmetric gauge (12 points)

Note: In this problem we call the eigenstate of a as φ0 in order to avoid confusion with the
ground state eigenfunctions ψn defined in problem 3.

(a) (3 points) The eigenstate equation

aφ0 = −i
z0√
2l0

φ0 (10)

simplifies to

∂z̄φ0 = −z − z0

4l20
φ0.

As we did in problem 3 we view this as an ordinary differential equation for φ0(z̄). The general
solution is

φ0(z, z̄) = f(z)e
− (z−z0)(z̄−z̄0)

4l20 (11)

where f(z) is an arbitrary function of z. Here and below, one gets full credit for any choice of
f(z).

(b) (3 points) Multiplying the wave function by it’s complex conjugate we have

|φ0|2 = |f(z)|2e−
(z−z0)(z̄−z̄0)

2l20

= |f(z)|2e−
(x−x0)2+(y−y0)2

2l20 .

(c) (5 points) This part count as extra bonus credit.

Since the Hamiltonian is time-independent, the wave function at time t is given by

φ(t) = e−iHtφ0.

In order to find φ(t) we act with e−iHt on both sides of (10)

e−iHtaeiHte−iHtφ0 = −i
z0√
2l0

e−iHtφ0

which leads to
a(−t)φ(t) = −i

z0√
2l0

φ(t) (12)

where a(t) is the Heisenberg operator for a

a(t) = eiHtae−iHt .

Since a(t) satisfies the equation

da

dt
= − i

~
[a, H] = −iωL

we find that
a(−t) = eiωLta . (13)
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Plugging (13) into (12) we get

aφ(t) = −i
z0e

−iωLt

√
2l0

φ(t)

= −i
z0(t)√

2l0
φ(t)

with
z0(t) = e−iωLtz0

φ(t) satisfies exactly the same equation as φ0 with z0 replaced by z0(t) (compare with equation
(10)). Thus from (11)

φ(t) = f(z) exp
(
− (z − z0(t))(z̄ − z̄0(t))

4l20

)
. (14)

(d) (1 point) Multiplying the answer to (c) by its complex conjugate we obtain

|φ(t)|2 = |f(z)|2e−
(x−x0(t))2+(y−y0(t))2

2l20

6. Off-diagonal conductance in two dimensions (10 points)

(a) (3 points) Using the usual formula for the inverse of a 2× 2 matrix, we write

σ =
1

ρ2
0 + ρ2

H

(
ρ0 ρH

−ρH ρ0

)
,

which gives us
σ0 =

ρ0

ρ2
0 + ρ2

H

σH =
ρH

ρ2
0 + ρ2

H

.

(b) (3 points) If ρH is non vanishing, then

lim
ρ0→0

σ0 = lim
ρ0→0

ρ0

ρ2
0 + ρ2

H

= 0.

Thus we can have both σ0 and ρ0 equal to 0 in the presence of a non vanishing B field.

(c) (4 points) In two dimensions, the current density is j = I/`, that is, current per unit
length (rather than current per unit area, as in a three-dimensional sample). Therefore, the
equation defining the Hall resistance, Vy = RHIx, is the same information as ~E = ρ~j. Notice
that Ey = Vy/L and jx = Ix/L. Therefore:

ρH =
Ey

jx
=

EyL

jxL
=

Vy

Ix
= RH .

Thus the Hall resistance of the sample does not depend on its dimensions. Alternatively, we
can give a more generic treatment (NOT required for full credit):

(
Ex

Ey

)
=

(
ρ0 −ρH

ρH ρ0

) (
jx

jy

)
,
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therefore, we can write,
(

Vx

Vy

)
=

(
W 0
0 L

)(
Ex

Ey

)

=

(
ρ0Wjx − ρHWjy

ρHLjx + ρ0Ljy

)

=

(
ρ0

W
L −ρH

ρH ρ0
L
W

)(
Ix

Iy

)
,

which is the matrix equation of the form V = RI. Clearly, when ρ0 = 0, the resistance matrix
is independent of L/W .
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