Quantum Physics III (8.06) Spring 2006
Solution Set 5

March 12, 2006

1. The Aharonov-Bohm effect on energy eigenvalues (20 points)

(a) (2 points) Using Stokes’ theorem, § A-dl = [ B-dA, we find for a circular loop with
radius r < a
2nrAg = Bomr?,

so within the cylinder we find Ay = %Bgr. If r > a, Stokes’ theorem tells us
2nrAg = Byma?,

so Ay = Bpa?/(2r) outside the cylinder.

(b) (2 points) By assumption, the particle can only move on a ring, so only p,s appears in H

and the radius is fixed to be b. Thus for our case the Hamiltonian is
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where I have used Ay = ®/(27b).

(¢) (2 points) The Schrodinger equation we would like to solve is
B0 | id)\’
(L) = .
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Putting 1 = ¢?, for n an integer to satisfy the boundary conditions on ¢ in this gauge, we
find %(n + ®/®()%¢) = Evp, and thus
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(d) (3 points) We must always have § A-dl = ® for a circular path surrounding the cylinder.
Now, if A=V/f, f; A-dl = f(b) — f(a). We can consider breaking the circular path into two
pieces,

T—€ —Tm+e€
o = / rAgdo + / rAg do.
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When we take the limit € — 0, the second term on the right hand side disappears. The first

term can be written in terms of f, giving
CD:f(T,?T—E)—f(T,—?T—‘rG)
in the limit € — 0. The simplest choice for f(¢) is

9
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(e) (3 points) We make the gauge transformation A — A — Vf = A’ ¢ — e~1af/(he)qpy — o/,
using the f of equation (1). The Schrodinger equation in the new gauge is
R 02
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V' = By (2)

This is a free particle Schrodinger equation, but it is only valid in the region —7+¢e¢ < ¢ < m—¢€
(as f is only defined in that region).

(f) (3 points) First, we express ¢'(£(m — €)) in terms of 1 (+(m — ¢)):

w/(ﬂ_ _ 6) — e—iq@(ﬂ—e)/(Qﬂ'hc)w(ﬂ_ _ 6) _ e—iq¢>/(2hc),¢(ﬂ_ _ 6)
’l/)/(—(’fr _ 6)) — eiq<1>(7r—e)/(271'?ic),¢(_(7T _ 6)) _ eiq@/(2hc),¢}(_7{+€).
Thus
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so the gauge transformed wave function is not single valued at ¢ = .
(g) (3 points) The Schrodinger equation (2) is a free particle equation, so we expect the
solutions to be 1’ (¢) = e**®. Using this guess for ¥/, we find
h%k?
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The boundary condition (3) determines the allowed values of k:

6ik7r — e*iq'ib/hcefikﬂ'7
so 2n(k +n) = }—qf for any integer n. Therefore, k = ;ﬂqfi +n = % + n, and the allowed
energy eigenvalues are
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These are precisely the same energies as those found in the original gauge, equation (1).

(h) (2 points) A plot of the energy eigenvalues as a function of ® is shown in figure 1. In
figures 2 and 3, the lowest and second lowest eigenvalues have been plotted as a function
of ®. As we increase ®, some energies increase while others decrease; however, the energy

levels intersect in such a way that the lowest, second-lowest, etc., energies are periodic in

®, with period ®y = 2 the flux quantum. There is no effect from the magnetic field
when the flux enclosed by the particle is a multiple of the flux quantum, or in other words,
if By = 0,®¢/(ma?),2®q/(ma?),.... The overall energy spectrum is insensitive to the integer
part of ®/®y due to the periodicity; we cannot tell the difference between the presence of one

flux quantum and the presence of 2 million.

. The fractional quantum Hall effect (5 points)

As we increase the flux going through the solenoid, we increase the magnetic field, and thus

the vector potential is time-dependent.
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Figure 1: The energy spectrum as a function of ®.
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Figure 2: The lowest energy eigenvalue.
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Figure 3: The second-lowest energy eigenvalue.
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This in turn induces an electric field, the magnitude of which is Fy = —==5% = —Z7 5.
The azimuthal field Ey in addition to azimuthal current creates radial current flow due to Hall

effect. The radial current is j = AA& = oF. Integrating this over ¢, we find the charge that

flows across circle of radius r:
T g q)o

AQ = JA(P/dQS
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We learned on the previous problem set that Ry = U,}l, so using o = €2/3h, we find
e
Q=3
The fractional charge of the excitation leads to a lot of very interesting physics; one notable

effect is that the quasiparticles behave neither as fermions or as bosons, but rather as something

in between (“anyons”).

. Perturbation of the three-dimensional harmonic oscillator (18 points)

(a) (3 points) Creation and annihilation operators are given by, aj and a; respectively. Our
system consists of three independent harmonic oscillators, so E|ni, ne,n3) = hw(ng + na +
ns + %)|n1,n2,n3>. Number operators are given by, N; = aIai. IfE= %hw7 then Y N; =1,
so there are three possible states: |1,0,0), |0,1,0), |0,0,1). We will take these states to be our
basis (i.e., in this order).

(b) (3 points) Using z; = ﬁ(ai + aj) and p; = 14/ hmT“’(a;r —a;),

ih
o= K% [(as +af)(a] — 1) = (@1 +af)(af - a3)

= —iKh(ala, —alas).



(c) (3 points) The perturbation H; maps states 1 and 3 into each other, and annihilates state

2, so its matrix representation is given by

o O

Hy =1Kh

o O O
o O =

(d) (3 points) We can see immediately from part (c) that |0, 1,0) is an eigenvector of H; with

1
eigenvalue 0. We now only need to diagonalize :Kh Nk The eigenvalues of this two

by two matrix are +K#h, with corresponding eigenvectors %(\1, 0,0) F1/0,0,1)). All of these
eigenvectors are also eigenvectors of Hy, so the total eigenenergies are ghw + Kh, ghw — Kh,
and ghw These energies are all distinct, so the degeneracy has been completely lifted by the
perturbation.

(e) (3 points) Using the eigenvectors found in (d) as a basis, the total Hamiltonian has the

following matrix representation in the degenerate subspace that we are studying:

%w+K 0 0
Ho+Hy=h 0 Sw—K 0
0 0 Sw

(f) (3 points) Since H; does not change the total number of excitations, HoH|y) = HyHol|y).
In other words, [Hy, H1] = 0, and therefore they are simultaneously diagonalizable (as we
saw in the previous parts of the problem). The fact that Hy and H; commute means that
(p|H1|vpy = 0, since we know |¢p) and Hi|p) are energy eigenstates with different energy

eigenvalues.

. A delta-function interaction between two bosons in an infinite square well (8

points)

(a) (4 points) The particles are independent, so to find the two particle wave functions we

simply multiply the free wave functions and symmetrize:

S = ) = 2 (52 on ()
Vst = %[¢1(x1)w2(x2)+¢2(J;1)¢1(x2)]

V2 { mTx1\ . [27xo . (272 TXo
= — |cos (—) sin -+ sin CcoSs (—) .
a a a a a

The energies of these wave functions are the sums of the free particle energies,
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(b) (4 points) The first order correction to the ground state energy is
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The first order correction to the first excited state energy is
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. Anharmonic oscillator (14 points)

(a) (3 points) The ground state wave function is even, while the perturbation Az3 is odd.
Therefore the integral [ dz[io|?Az® vanishes, and the first order contribution to the ground

state energy is zero.

To calculate the second-order shift, we need the expectation value (n|(a+a')3|0). We calculate
(a + a")?|0) = 3|1) + v/6/3), so the only contributions to the shift in the ground state energy
will come from the states |1) and |3). We find, therefore,

(k|(a + a")?|0 hoY {9 6)°
AE = Z' o+ al) 1000 =N — 7+(\f> ’
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which gives AE(()Q) =- éiﬁ\;ﬁz

(b) (3 points) The first order correction to the ground state wave function is

mH 0
ol = ZEOI_I

As in part (a), the only contributions are from m = 3 and m = 1:

Pt (m) (i)

The ground state wave function is then, to first order, ¢y = [0) — 2 (32 )3/2 <3|1> + \/g |3>>

2mw
(c) (3 points) A sketch of the potential is in figure 4. This potential is unbounded from below,
and so there is no ground state — any state localized near x = 0 is unstable, as it will eventually
tunnel through the barrier. Perturbation theory does not account for the tunneling effects. It
is good for examining relatively small, localized changes in the potential, but not for the cases

like this, where we have drastically changed the asymptotic behavior of the potential.
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Figure 4: The potential Az>.

The above qualitative argument is enough for full credit. However, it is nice to see quanti-
tatively what is going on. You learned in 8.04 how to compute the probability of tunneling
through a barrier. If you apply these methods to our problem, you will find that the probability
for the particle to tunnel from x = 0 to x = —”;—‘j\z goes like exp(—const/A?). This is nonzero,
but we cannot expand it as a Taylor series in A\. Thus, to any finite order in perturbation

theory, we compute the probability of tunneling to be zero.

(d) (5 points) We now take the perturbation to be H' = Az*. To calculate the first order
shift in the ground state energy, we need (a + a')*|0) = 3|0) + 61/2|2) + 2v/6/4). We find the
first order shift in the ground state energy is

no\? no\°
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We sketch the behavior of the potential for positive and negative A in figure 5. If A > 0,
perturbation theory is a good approximation to the ground state, which “sees” a region of the
potential where Azt <« ’”T‘”Q:cz. (Perturbation theory will not work so well for higher states.)
The contribution to the ground state energy at first order is positive, which makes physical
sense — we are confining the particles with a sharper potential, which suggests that their energy
should increase.

If, of the other hand, A < 0, perturbation theory clearly fails. The change to the ground state
energy is negative, so perturbation theory does see that the overall energy will be lowered.
However, as in part (c), perturbation theory doesn’t “know” about the change in the asymp-
totic behavior of the potential, and cannot inform us about the tunneling that will result.

In cases like this, where flipping the sign of the perturbation parameter alters the asymptotic



Figure 5: The potential $mw?z? 4+ Az*, with (left) A > 0, and (right) A < 0.

behavior of the perturbation, strictly speaking, the radius of convergence of perturbation theory
as a series in A is zero. Therefore, even when A\ > 0, perturbation theory is an asymptotic
expansion: it cannot capture all the physics, although it can still give us good information

about the first few terms in the series.



