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March 17, 2006

1. The Feynman-Hellmann theorem (10 points)

(a) (5 points) We will prove the Feynman-Hellmann theorem two ways. First, we Taylor
expand H(λ+ε) =

∑∞
n=0 H(n)(λ)εn. Likewise, we Taylor-expand Em(λ+ε) =

∑∞
n=0 E

(n)
m (λ)εn,

and ψm(λ + ε) =
∑∞

n=0 ψ
(n)
m (λ)εn. We then use these expansions in the identity Em =

〈ψm|H|ψm〉 to find an infinite set of equations, matching orders in ε on both sides. We are
interested in the O(ε) equation, because H(1)(λ) = ∂H

∂λ . We can save ourselves some algebra,
as this order-matching in ε is exactly the same order-matching that we did when we derived the
formulas for first-order perturbation theory. Thus, it suffices to treat εH(1) as a perturbation.
We then have

E(1)
m =

∂Em

∂λ
= 〈ψm|H(1)|ψm〉 = 〈ψm|∂H

∂λ
|ψm〉. (1)

Alternatively, we can consider differentiating the identity Em =
∫

dx ψ∗Hψ with respect to λ.
This yields ∂Em

∂λ =
∫

dxψ∗m
∂H
∂λ ψm + Em

∂
∂λ

∫
ψ∗mψm. Since ψm is normalized, we can conclude

∂Em

∂λ =
∫

dxψ∗m
∂H
∂λ ψm, as we desired to show.

(b) (5 points) We recall Hsho = − h̄2

2m
∂2

∂x2 + mω2x2

2 , and Esho = (n + 1
2 )h̄ω.

• We first take λ = ω. Using (1), we have

(n +
1
2
)h̄ = 〈n| 2

ω
V (x)|n〉.

Multiplying by ω/2 on both sides, we find

1
2
En = 〈n|V (x)|n〉,

or 〈V (x)〉 = 1
2E.

• We now take λ = h̄. Applying (1), we have

(n +
1
2
)ω = 〈n| 2

h̄
T (x)|n〉.

Using similar algebra, we can rewrite this as 〈T (x)〉 = 1
2E.

• We now take λ = m. Equation (1) now gives us

0 =
1
m
〈n|T (x)− V (x)|n〉,

or 〈T (x)〉 = 〈V (x)〉.

According to the virial theorem, 1
2E = 〈T 〉 = 〈V 〉, which is exactly what we have derived

above.
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2. Energy shift due to finite nuclear size (12 points)

(a) (3 points) Our charge distribution is ρ(r) = 3e
4πR3 for r ≤ R, and 0 for r > R. Using

Gauss’ law, we find

E(r) =
er

R3
r < R

=
e

r2
r ≥ R

Integrating to find the potential energy V (r) = −e
∫∞

r
E dr, we find

V (r) = −e2

r
r > R

= −e2

(
1

2R3
(R2 − r2) +

1
R

)
r < R.

(b) (6 points) We learned on the previous part of the problem that for r < R, the electrostatic
potential has been modified: V (r) = − e2

r − e2[R2−r2

2R3 + 1
R − 1

r ] ≡ V0(r) + ∆V (r). We will
treat ∆V as a perturbation. The first-order change in the ground state energy is ∆E

(1)
1 =

〈ψground|∆V |ψground〉. Using ψground = 2
(4πa3

0)
1/2 e−r/a0 , this becomes

∆E
(1)
1 =

∫ R

0

r2dr

(
−4e2

a3
0

)
e−2r/a0

[
R2 − r2

2R3
+

1
R
− 1

r

]
.

The integrals above can be done exactly, using integration by parts, iterated as necessary.
However, since we are already approximating, and since R ¿ a0, we can make our lives easier
by replacing ψ(r) by ψ(0) since ψ does not change rapidly in this region. Then

∆E
(1)
1 '

(
−4e2

a3
0

) ∫ R

0

dr

[
r2(R2 − r2)

2R3
+

r2

R
− r

]

=
4e2R2

10a3
0

.

Plugging in numbers, ∆E
(1)
1 = 3.8 × 10−9 eV. Since E

(0)
1 = − e2

2a0
, the ratio of the first-order

correction to the unperturbed ground state energy is

|∆E
(1)
1 |

|E(0)
1 |

=
4
5

(
R

a0

)2

= 2.8× 10−10,

which is very small.

(c) (3 points) The effect of finite nuclear size is most important for l = 0 states, as ψnl(0) = 0
unless l = 0. We can estimate the relative importance of the effect for l = 1 states by noting
that ψn1(r) contains an additional factor of r/a0 relative to ψn0(r). This means that the first-
order correction to the energy for l = 1 has an additional factor of (R/a0)2 ∼ 10−10 relative
to the first-order correction to the energy for l = 1.

3. Polarizability of a particle on a ring (18 points)
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(a) (4 points) The unperturbed Hamiltonian H0 = − h̄2

2ma2
∂2

∂φ2 has (normalized) eigenfunctions

ψn(φ) =
√

1
2π e−inφ, for all integers n. The energy eigenvalues are En = h̄2n2

2ma2 . Since the energy
depends only on n2, the energies En and E−n are degenerate, so all energy levels are doubly
degenerate except n = 0, which is non-degenerate.

(b) (6 points) We can use the usual non-degenerate perturbation theory to calculate the first
order correction to the ground state wave function. We need the matrix elements 〈n| cosφ|0〉,
where I have introduced the notation |n〉 ∼=

√
1
2π e−inφ. Now cos φ = 1

2 (eiφ + e−iφ), and

e±iφ|n〉 = |n± 1〉, so 〈n| cos φ|0〉 = 1
2 (δn,1 + δn,−1). Thus,

ψ
(1)
0 =

ma3

h̄2 qε (|1〉+ | − 1〉) .

The induced electric dipole moment is 〈ψ0|qa cos φ|ψ0〉 = 2qa〈ψ(0)
0 | cosφ|ψ(1)

0 〉, which after
some algebra we find to be

~dinduced =
2ma4q2

h̄2 ε.

The polarizability of the system is, therefore, P = 2ma4q2

h̄2 .

(c) (8 points) Because there are three hydrogen atoms, if we rotate one CH3 group by 2π/3,
then the overall system is left invariant. Therefore our perturbation should have a 3-fold
rotation symmetry. Since that is the simplest way to make sure H ′(φ + 2π/3) = H ′(φ). The
simplest Hermitian operator we could thus write down would be H ′ ∝ cos 3φ (the choice
H ′ ∝ sin 3φ only differs by a choice of origin).

The change in the ground state energy due to the perturbation H ′ = b cos 3φ is to first order
0. To second order, we have

∆E
(2)
0 =

∑

k

−2ma2

h̄2k2

b2

4
(δk,3 + δk,−3)

= −ma2b2

9h̄2 .

The change in the ground state wave function is to first order

∆ψ
(1)
0 = −ma2b

h̄2

∑

k

δk,3 + δ−k,3

k2
|k〉

= −ma2b

9h̄2 (|3〉+ | − 3〉) .

In position space, the ground state wave function is ψ0 =
√

1
2π (1 − 2ma2b

9h̄2 cos 3φ), so ψ0 is
minimized where cos 3φ = 1, and maximized where cos 3φ = −1. Thus there is a higher
probability of finding the orientation of the CH3 group at φ = π/3, π, 5π/3, and a lower
probability of finding it at φ = 0, 2π/3, 4π/3. This is easy to understand physically, if we
look at the ethane molecule end-on (see figure 1). The molecule can lower its energy by rotating
in such a way as to minimize the electrostatic energy arising from the interaction between the
hydrogen atoms in the two groups.

3



Figure 1: A cartoon of an ethane molecule in its most favorable orientation, seen end on.

4. Stark effect for n = 3 states of hydrogen (10 points)

(a) (5 points) We want to calculate
∫

d3x ψ∗3lm z ψ3l′m′ , while doing as little work as possible.

First, since the perturbation H ′
S = −eεz is independent of φ, it will not connect states with

different values of m, since the functions {eimφ} are orthogonal. Therefore, 〈3lm|H ′|3l′m′〉 ∝
δmm′ , which we can summarize as “∆m = 0”.

Second, the integral
∫

d3xψ∗3lmzψ3l′m′ will vanish if the integral is odd under parity. The spheri-
cal harmonics Ylm have parity (−1)l, and z is parity-odd. Therefore,

∫
d3xψ∗3lm z ψ3l′m′vanishes

unless l + l′ is odd. For our case, there are two possibilities: either l = 2 and l′ = 1, or l = 1
and l′ = 0. We can summarize this condition as “∆l = 1”.

The two above conditions have eliminated all matrix elements except 〈300|H ′
S |310〉, 〈31 ±

1|H ′
S |32± 1〉, and 〈310|H ′

S |320〉. Now we need to actually do the integrals. They are tedious
but not difficult to do by hand, but we will simply quote the results: (There is no need to
evaluate c1, c2, c3 explicitly to get the full credit.)

〈300|H ′
S |310〉 = 3

√
6a0eε = c1 a0eε

〈310|H ′
S |320〉 = 3

√
3a0eε = c2 a0eε

〈31± 1|H ′
S |32± 1〉 =

9
2
a0eε = c3 a0eε

(b) (5 points) In the basis {|300〉, |310〉, |320〉, |311〉, |321〉, |31 − 1〉, |32 − 1〉, |322〉, |32 − 2〉},
the matrix representation of H ′

S in the degenerate subspace is

H ′
S = 3a0eε




0
√

6 0√
6 0

√
3

0
√

3 0
0 3

2
3
2 0

0 3
2

3
2 0

0
0




.
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Figure 2: A sketch of the Stark effect on the n = 3 energy levels of hydrogen

(Anything not explicitly filled in above is zero.) This matrix is block-diagonal, so we can
diagonalize each block separately.

The first block, the three-by-3 matrix in the upper left-hand corner, has eigenvalues λ =
0,±3. This gives the first order correction to the energy eigenvalues as ∆E

(1)
S = 0,±9a0eε (or

∆E
(1)
S = 0,±

√
c2
1 + c2

2 a0eε).

The second and third blocks, the two-by-two blocks, have eigenvalues λ = ± 3
2 . The first

order corrections in these blocks are ∆E
(1)
S = ± 9

2a0eε (or ∆E
(1)
S = ±c3 a0eε). Both of these

eigenvalues are twofold degenerate.

The final two eigenvalues are clearly both 0, so the eigenvalue 0 is threefold degenerate in total.

We now need to show that the eigenstates of H ′
S are also eigenstates of Lz. This is easy: as

we already noted, H ′
S does not depend on φ. Therefore, it commutes with Lz = h̄ ∂

∂φ , and the
two operators are simultaneously diagonalizable.

Noting that each block of H ′
S has the same Lz eigenvalue ml, we can draw our energy level

diagram; see figure 2.
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