Quantum Physics III (8.06) Spring 2006
Solution Set 6

March 17, 2006

1. The Feynman-Hellmann theorem (10 points)

(a) (5 points) We will prove the Feynman-Hellmann theorem two ways. First, we Taylor
expand H (A +e€) = 300 ) H™ (A\)e. Likewise, we Taylor-expand E,, (A+e) = > o0 ES(\er,
and ¥, (A +€) = >0, n )()\)e”. We then use these expansions in the identity E,, =
(Ym|H |t to find an infinite set of equations, matching orders in € on both sides. We are
interested in the O(¢) equation, because H1()\) = %—I){. We can save ourselves some algebra,
as this order-matching in € is exactly the same order-matching that we did when we derived the
formulas for first-order perturbation theory. Thus, it suffices to treat eH") as a perturbation.
We then have

OFE,
ON
Alternatively, we can consider dlfferentlatlng the identity F f dx ¢* Hy with respect to .
This yields <5 ‘9Em = f dzxy, %Tﬁm +E,, % X f Uy Y. Since ¢m is normalized, we can conclude
ag/\’" = [dx 77/1;1 9Ly, as we desired to show.

(b) (5 points) We recall Hypo = ;; 8:2 + m“’ 2 and Eao = (n+ 3)hw.

o We first take A = w. Using (1), we have

Multiplying by w/2 on both sides, we find

1

S Fn = (lV (2)ln),
or (V(z)) = E.

e We now take A = hi. Applying (1), we have

2o = (2 T@)ln).

(n+2

Using similar algebra, we can rewrite this as (T'(z)) = 1 E.

o We now take A = m. Equation (1) now gives us

0= (nlT(x) ~ V(x)ln),

According to the virial theorem, £E = (T) = (V), which is exactly what we have derived

above.



2. Energy shift due to finite nuclear size (12 points)

(a) (3 points) Our charge distribution is p(r) = ;2% for r < R, and 0 for r > R. Using
Gauss’ law, we find

E(T) = ﬁ T<R
(&
= 3 r>R

Integrating to find the potential energy V(r) = —e froo E dr, we find

2

Vir) = f—er r>R
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= —e (2R3(R 7‘)—|—R> r < R.

(b) (6 points) We learned on the previous part of the problem that for » < R, the electrostatic
potential has been modified: V(r) = —é - eQ[R;E;Z + 5 — 2] = Vo(r) + AV(r). We will
treat AV as a perturbation. The first-order change in the ground state energy is AE%I) =

<wground|AV|¢ground>- Using '(/}ground = WB_T/%» this becomes
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The integrals above can be done exactly, using integration by parts, iterated as necessary.

However, since we are already approximating, and since R < ag, we can make our lives easier
by replacing ¥ (r) by ¥(0) since 1 does not change rapidly in this region. Then
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Plugging in numbers, AE%I) =3.8x107%eV. Since E§O) = —%7 the ratio of the first-order

correction to the unperturbed ground state energy is

AE| 4 (R
EO] 5

2
) =2.8x 10710,
ag

which is very small.

(¢) (3 points) The effect of finite nuclear size is most important for | = 0 states, as 1,,;(0) = 0
unless | = 0. We can estimate the relative importance of the effect for [ = 1 states by noting
that 1,1 (r) contains an additional factor of r/ag relative to ¥,o(r). This means that the first-
order correction to the energy for I = 1 has an additional factor of (R/ag)? ~ 10719 relative

to the first-order correction to the energy for [ = 1.

3. Polarizability of a particle on a ring (18 points)



(a) (4 points) The unperturbed Hamiltonian Hy = 7%6‘% has (normalized) eigenfunctions

Y (@) =1/ %e‘iw, for all integers n. The energy eigenvalues are F,, = 271;’}122 . Since the energy

depends only on n?, the energies E, and E_,, are degenerate, so all energy levels are doubly

degenerate except n = 0, which is non-degenerate.

(b) (6 points) We can use the usual non-degenerate perturbation theory to calculate the first
order correction to the ground state wave function. We need the matrix elements (n| cos ¢|0),
where I have introduced the notation |n) = \/;e_im’. Now cos¢ = 3(e'® + e~%), and
e*|n) = [n £ 1), so (n|cos #|0) = 1(8,,1 + 6n,—1). Thus,

3
08 = Toae (1) +1 - 1)

The induced electric dipole moment is (tg|qa cos ¢|thg) = 2qa<z/J(()O)|cos q§|w(()1)>, which after
some algebra we find to be

i 2ma’q?
induced =
TL2
27ﬂa4q2

The polarizability of the system is, therefore, P = ==
(c) (8 points) Because there are three hydrogen atoms, if we rotate one C'Hs group by 27/3,
then the overall system is left invariant. Therefore our perturbation should have a 3-fold
rotation symmetry. Since that is the simplest way to make sure H'(¢ + 27/3) = H'(¢). The
simplest Hermitian operator we could thus write down would be H' o cos3¢ (the choice

H' x sin 3¢ only differs by a choice of origin).
The change in the ground state energy due to the perturbation H' = bcos3¢ is to first order
0. To second order, we have
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The change in the ground state wave function is to first order
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In position space, the ground state wave function is iy = 1/%(1 — %QLT“;I’ cos 3¢), so g is
minimized where cos3¢ = 1, and maximized where cos3¢p = —1. Thus there is a higher

probability of finding the orientation of the CHs group at ¢ = /3, m, 57/3, and a lower
probability of finding it at ¢ = 0, 27/3, 4w/3. This is easy to understand physically, if we
look at the ethane molecule end-on (see figure 1). The molecule can lower its energy by rotating
in such a way as to minimize the electrostatic energy arising from the interaction between the

hydrogen atoms in the two groups.



Figure 1: A cartoon of an ethane molecule in its most favorable orientation, seen end on.

4. Stark effect for n = 3 states of hydrogen (10 points)
(a) (5 points) We want to calculate [ d®z )3, 2131, while doing as little work as possible.

First, since the perturbation Hg = —eez is independent of ¢, it will not connect states with
different values of m, since the functions {e™?} are orthogonal. Therefore, (3lm|H’|3I'm') o

Omm’, Which we can summarize as “Am = 0”.

Second, the integral [ d3x¢§lm2¢31/m/ will vanish if the integral is odd under parity. The spheri-
cal harmonics Y}, have parity (—1)!, and z is parity-odd. Therefore, [ d®z 1%, 2 131, vanishes
unless [ + [’ is odd. For our case, there are two possibilities: either [ =2 and I’ =1, 0or [ =1
and I’ = 0. We can summarize this condition as “Al = 17.

The two above conditions have eliminated all matrix elements except (300|Hg|310), (31 +
1|H§|32 £ 1), and (310|Hg|320). Now we need to actually do the integrals. They are tedious
but not difficult to do by hand, but we will simply quote the results: (There is no need to
evaluate ¢, co, c3 explicitly to get the full credit.)

(300|H5|310) = 3V6ages = ¢ agee
(310|H%|320) = 3v/3apee = ¢y agee

(31 +£1|Hg|32 + 1) §a0€€ = c3 agee

(b) (5 points) In the basis {|300), |310),]320), |311),]321), |31 — 1), |32 — 1), [322), |32 — 2},
the matrix representation of Hg in the degenerate subspace is
0
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Figure 2: A sketch of the Stark effect on the n = 3 energy levels of hydrogen

(Anything not explicitly filled in above is zero.) This matrix is block-diagonal, so we can
diagonalize each block separately.

The first block, the three-by-3 matrix in the upper left-hand corner, has eigenvalues A =
0,43. This gives the first order correction to the energy eigenvalues as AEE@U = 0, £9agee (or
AEg) = 0,4/} + G ages).

The second and third blocks, the two-by-two blocks, have eigenvalues A = :l:%. The first
order corrections in these blocks are AEg) = j:%aoes (or AE(Sl) = tcgapee). Both of these
eigenvalues are twofold degenerate.

The final two eigenvalues are clearly both 0, so the eigenvalue 0 is threefold degenerate in total.

We now need to show that the eigenstates of H§ are also eigenstates of L,. This is easy: as
we already noted, Hg does not depend on ¢. Therefore, it commutes with L, = ha%’ and the
two operators are simultaneously diagonalizable.

Noting that each block of H§ has the same L, eigenvalue m;, we can draw our energy level

diagram; see figure 2.



