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1. Variational bound on the ground state in a power-like potential (10 points)

The trial wave function is
2
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Normalizing the wavefunction we compute
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The expectation value of energy for this wave function is

and therefore
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Requiring the derivative of F(b) with respect to b to be zero we find that the minimum of

(v|H|) is reached at
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with the energy at the minimum

The trial wave function ¥ (b) a linear combination of the ground and excited states. Therefore
the energy in the ground state cannot be greater than F,i,.

2. Variational bound on the excited states (15 points)

(a) (6 points) A generic wave function ¢ can be expanded in terms of energy eigenfunctions
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where [ig) is the ground state and |¢;) is the first excited state with energy Ej. ¢, (n > 1)
are higher excited states with E,, > Fj. The condition (1|¢p) = 0 implies that ¢y = 0 and
thus (¥[¢p) = 1 leads to
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The expectation value of H is

D Cricaltbm|H|tn)

m,n>1

= Z CrCnOm.nEn (8)

m,n>1

Z |Cn|2En

n>1

Z Z |cn|2E1

n>1

=F Z |Cn|2

n>1

= F.

(V[ H[p)

Q.E.D.

(b) (2 points) Since the potential Az* is even, the ground state must also be even function

of x. Then for example we may choose
) = Aze™" (9)

as a set of the trial functions. Since [¢) is an odd function of z it has zero overlap with
|tbo). The normalization constraint (¢|¢)) = 1 will determine A in terms of b, thus giving a

one-parametric set of trial functions.

(c) (7 points) The same set of trial functions as in (b) can be used to get an estimate for the

harmonic oscillator. Normalizing (9) we write
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and thus
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The energy expectation value is
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Setting the derivative of E(b) to zero we find that
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with .
Ernin = 7 . (15)

Note that in this case the variational method gave us exact answer for the energy, which comes
at no surprise since our set of trial wave functions ¢ ~ ze~b” includes that for the first excited

state of the harmonic oscillator.

. Variational bound on the ground state in an exponential potential (15 points)
(Full credit will be given to answers to this problem that set i =1.)
(a) (2 points) The condition that the wave function be normalized yields 1 = [ d3z C? e=2A" =
4rC? [ drr?e=? . Defining x = 2r, we find 1 = 47C?(5%)? [ dza?e~". Using the identity
Jo© dza?e™ = 2, we find
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(b) (3 points) Our trial wavefunction has only radial dependence, therefore angular parts in
kinetic energy give 0 when they act on the wavefunction. It is sensible to choose an s-wave
ansatz, as was given in the problem, since we expect an s-wave ground state for a particle in
a spherically symmetric potential. Thefore expectation value of the energy in our trial wave

function is given by the integral
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which we can rewrite as
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(c) (4 points) We minimize E with respect to A:
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or, using part (a),
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This has the obvious solution A = 0; the other solutions are found by solving the quartic
equation (g + A\)* — 3amAu/h? = 0. By glancing at the quartic formula, it is easy to see that
the quartic equation has no real roots unless 8lam — 256u2A% > 0, or, in other words, only
for av > 25&# does E have extrema other than at A = 0. Therefore for small o, minimum
value of F()) is 0, i.e. there are no bound states. [Note: You can solve the quartic equation
(u + A\)* = aX using Mathematica, and you can see the occurrence of \/m at
several places. In order to have one or more real solutions, you need 27a — 256 to be

positive. This is where you get the above condition.]

When A = 0, the energy also vanishes, and we are left with something that looks very much

like a zero momentum plane wave. The wave function is distributed uniformly through space.
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Figure 1: k =

(Of course, this means that the probability of finding the particle at any specific point goes to

zero as the volume of space goes to infinity.)

(d) (4 points) In terms of our dimensionless variables z and k, we find
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We would like to know when it is possible to have £ = 0, as this is the dividing line between

having a bound state and having no bound states. We plot this dividing line as a function
3
of  and « in figure 1. To have £ = 0, we must have kK = % The minimum value of k

satisfying that condition is obtained by setting % = 0, yielding

Kmin = 3.375, T = —.

(e) (2 points) Recall that the variational method gives only an upper bound on the ground
state energy. If £ < 0, we know that there exists a bound state, but if £ > 0, we cannot
conclude that there is no bound state. Therefore, the previous section gives us neither a
minimum nor a maximum value of a required for a bound state. All it tells us is that if
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o> ’”‘T"“, then we know that a bound state exists, while if o < , we do not know

if a bound state exists.



