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1. Tunneling and the Stark effect (20 points)

(a) (3 points) For an infinitely deep square well of width d, the energy of the ground state
is E∞,0 = h̄2π2

2md2 (this is the amount by which ground state energy is above the bottom of the
potential well). Since the zero of energy is at the top of the well rather than the bottom in
this problem, we estimate E0 = h̄2π2

2md2 − V0. Full credit will be given on writing only E∞,0.

Optional part: To show that true ground state is lower than this, use variational principle.
Consider potential V (x) = 0 for |x| < d/2 but V (x) = V0 for |x| > d/2. Take the trial
wavefunctions to be ψ(x) =

√
2/d cos(πx/d) for |x| < d/2 and 0 everywhere else. Of course

this is the exact ground state wavefunction for the infinite well potential and indeed 〈ψ|H|ψ〉 =
E∞,0, where H is hamiltonian corresponding to the potential mentioned above, which is nothing
but the square well potential of this problem shifted by V0. Therefore the true ground state
must be lower than E∞,0.

(b) (2 points) A sketch of the potential is in figure 1.
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Figure 1: A square well potential in a constant electric field.

The potential no longer binds states because it is unbounded from below; a particle trapped
in the well can reduce its energy by tunneling out to x = ∞.

(c) (5 points) To use semiclassical approximation to find the tunneling probability, we first
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need to find the classical turning point. This occurs at

xt = −E0

eE =
V0 − h̄2π2

2md2

eE .

The tunneling probability is given semi-classically by

T ' e
− 2

h̄

∫ xt

d/2
dx |p(x)|

.

The integral appearing in the exponential is
∫ xt

d/2

dx
√

2m(V − E0) =
√

2meE
∫ xt

d/2

dx
√

xt − x

=
2
3

√
2meE

(
xt − d

2

)3/2

.

Since eEd ¿ V0, the barrier is very wide, and we do indeed have xt À d:

xt

d
=

V0 − h̄2π2

2md2

eEd
' V0

eEd
À 1,

and therefore

T ' e−
4
3h̄

√
2mV 3

0
eE . (1)

(d) (5 points) Classically, the time associated with this particle is t0 = 2d
v , the time it takes

to bounce back and forth once. Here the velocity is v =
√

2E∞,0
m = h̄π

md . So, if we have N

particles in the box, all N hit the right wall in time t0, therefore in time dt, Ndt/t0 particles
hit the right wall and escape with the probability T . Hence, differential rate of loss of particle
number is given by:

dN = −TN
dt

t0
,

and therefore
N = N0e

−Tt/t0 ,

where N0 is the initial number of particles. The lifetime of the bound state is thus,

τ =
t0
T

=
2md2

Tπh̄
.

(e) (2 points) Plugging in the given numbers, T = e−86115. This gives the lifetime of τ =
4× 1037383 s —which is unbelievably long! The age of the universe is 13.7 billion years, which
is 4.3× 1017 s.

(f) (3 points) Since we found that T = exp(−const./E), and τ ∝ 1
T , we have already demon-

strated that the lifetime goes like exp(1/E). If we Taylor expand e−1/E about E = 0, we get
zero to any finite order in E , and hence you cannot see tunneling at any order in perturbation
theory.
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2. Quantum Mechanics of a Bouncing Ball (10 points)

(a) (5 points) For this potential, the appropriate quantization condition is
∫ xt

0
dx

√
2m(En −mgx) =

(n− 1
4 )πh̄ (see e.g. Griffiths equation (8.47) on p. 330), as one side of the potential is a vertical

wall. The classical turning point here is xt = En/(mg). Doing the integral,

∫ xt

0

dx
√

2m(En −mgx)1/2 =

√
2
m

2
3g

E3/2
n .

We therefore find

En =
(

3
4

(
n− 1

4

)
πh̄
√

2mg

)2/3

.

(b) (2 points) Quantum mechanical ground state of neutron (n = 1 and m = 1.67×10−27Kg)
will have energy

E1 =
(
(3/4)2πh̄

√
2mg

)2/3

= 1.37× 10−12 eV

This is tiny, as expected—gravity is a very weak force.

(c) (3 points) Classically, the energy of the dropped ball is Ec = mgx0. With x0 = 1 m,
m = 1 g, this is Ec = 9.8× 10−3J . We would like to find n such that En = 9.8× 10−3 J. This
works out to the huge value, n = 2× 1010!

3. Application of the Semiclassical Method to the Double Well Potential (22 points)

(a) and (b) (11 points) The steps suggested by Griffiths are: work out the wave function ψ1

in region (i); from ψ1 use the connection formulae at x2 to obtain the wave function ψ2 in
regions (ii); use ψ2 and the connection formulae at x1 to obtain the wave function ψ3 in region
(iii). (8.59) can be found by requiring that ψ3 should satisfy ψ3(0) = 0 or ψ′3(0) = 0 at x = 0.

Here we will use a slightly different approach from what Griffiths suggests. The purpose is
for you to see an alternative approach, which has its own advantages. We use the symmetry
condition to write down the wave function ψ3 in region (iii) directly. The wave function ψ2 in
region (ii) then can be obtained using two ways: from ψ1 in region (i) via connection formulae
at x2, or from ψ3 in region (iii) via connection formulae at x1. The equality of two wave
functions leads to equation (8.59) of Griffiths. Here are details of this approach. Note that the
connection formulae used below follow the convention of equations (3)-(6) in supplementary
notes on connection formulae.

The wave function must satisfy two conditions, namely that (1) it must go to 0 at ∞, and
(2) since the potential is even, the wave function must be either even, ψ(x) = ψ(−x), or odd,
ψ(x) = −ψ(−x). These two conditions tell us that the WKB wave function in the three regions
must have the following forms:

ψ1 =
A√
|p|e

− 1
h̄

∫ x

x2
dx |p|

, (2)

ψ2 =
B√
p
e

i
h̄

∫ x1

x
dx p +

C√
p
e
− i

h̄

∫ x1

x
dx p

,

ψ3 =
D√
|p| cosh

(
1
h̄

∫ x

0

dx |p|
)

ψ even (3)
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=
D√
|p| sinh

(
1
h̄

∫ x

0

dx |p|
)

ψ odd. (4)

At the classical turning point x2, we apply the connection formula to ψ1 (eq (2)) to find the
wave function in region (ii)

ψ2(x) =
2A√

p
cos

[∫ x2

x

p dx− π

4

]
.

Defining

θ =
1
h̄

∫ x2

x1

p dx

and
I(x) =

1
h̄

∫ x

x1

p dx,

we can rewrite ψ2 as

ψ2(x) =
2A√

p
cos

(
I +

π

4
− θ

)
. (5)

We now turn our attention to the classical turning point x1. First, we define

φ

2
=

∫ x1

0

p dx.

In terms of φ, the wave function (3) in region 3 is

ψ3 =
D

2
√
|p|

[
eφ/2e

− 1
h̄

∫ x1

x
dx |p| ± e−φ/2e

1
h̄

∫ x1

x
dx |p|

]
, (6)

where the plus sign holds when the wave function is even, and the minus sign when the wave
function is odd. We now use both connection formulae to (6) at x1 conclude that in region (ii)

ψ2(x) =
D

2
√
|p|

[
2eφ/2 cos

(
I − π

4

)
± e−φ/2 cos

(
I +

π

4

)]
. (7)

We are allowed to use both connection formula in this case—that is, we are allowed to use
one connection formula “against the arrow”— because the symmetry of the potential tells
us exactly which linear combination of growing and dying exponentials we have in region 3.
Ordinarily, we are not allowed to use the second connection formula against the arrow because if
the wave function contains any component which grows exponentially, then our approximation
is not sensitive enough to tell whether there is also a component of the wave function which
the case exponentially, and if so what the relative weight of each part of the wave function is.
In this case, however, we know that we must have either a sinh or a cosh, as the potential is
even.

By setting equation (5) equal to equation (7), we find

D
[
2eφ/2 sin

(
I +

π

4

)
± e−φ/2 cos

(
I +

π

4

)]
= 4A

[
cos

(
I +

π

4

)
cos θ + sin

(
I +

π

4

)
sin θ

]
,

which tells us that D = e−φ/22A sin θ, and, more importantly, that

tan θ = ±2eφ.
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Figure 2: Double well potential

(c) (2 points) Writing θ = (n + 1
2 )π + ε, we find

tan θ =
(−1)n cos ε

(−1)n+1 sin ε
' −1

ε
.

Therefore the quantization condition becomes

−1
ε

= ±2eφ

and therefore
θ = (n +

1
2
)π ∓ 1

2
e−φ. (8)

(d) (3 points) The potential is sketched in figure 2. For this potential we have

θ =
2
h̄

∫ xt

a

dxmω
√

(xt − a)2 − (x− a)2.

Using the result
∫

dz
√

α2 − z2 =
1
2
z
√

α2 − z2 − 1
2
α2arctan

(
− z√

α2 − z2

)
,

we find

θ =
2mω

h̄

(
E

mω2
arctan(∞)

)
=

πE

h̄ω
.

Here we have taken arctan(∞) = π/2, as the multivaluedness of the inverse tangent is taken
care of below. Equation (8) is now

πE

h̄ω
= (n +

1
2
)π ∓ 1

2
e−φ,

or
E = (n +

1
2
)h̄ω ∓ h̄ω

2π
e−φ.

5



The first part of this expression is, of course, the familiar harmonic oscillator energy levels;
the second part is an offset due to the barrier.

(e) (3 points) The wave function for a particle that starts out in the right well is

ψ(x, t) =
1√
2

(
ψ+

n e−iE+
n t/h̄ + ψ−n e−iE−n t/h̄

)
.

The probability density coming from this wave function is

|ψ(x, t)|2 =
1
2

(
|ψ+

n |2 + |ψ−n |2 + 2ψ+
n ψ−n cos

(
ωe−φt

π

))
.

When cos
(

ωe−φt
π

)
= −1, then the particle has hopped to the other well, since at that time

t−1 |ψ(x, t−1)|2 = 1
2 |ψ+

n (x, 0)− ψ−n (x, 0)|2.
The period of oscillation between the two wells is therefore τ = 2π2

ω eφ. Note that a large
barrier corresponds to a very long period, which makes physical sense.

(f) (3 points) We have for this specific potential

φ =
2mω

h̄

∫ x1

0

dx
√

(x− a)2 − (x1 − a)2.

Using the integral
∫

dz
√

z2 − α2 =
1
2
z
√

z2 − α2 − 1
2
α2 ln

(
z +

√
z2 − α2

)
,

we find

φ =
mω

h̄


a

√
a2 − 2E

mω
− 2E

mω
ln

2E/mω

−a +
√

a2 − 2E
mω


 .

In the limit where V (0) = 1
2mω2a2 À E, the above expression reduces to

φ ' mωa2

h̄
.

4. Vibrational and rotational Spectra in Born-Oppenheimer Approximation (8 points)

(a) (5 points) Define a convenient dimensionless variable y ≡ (R−R0)/R0. In terms of this
new variable E(y, J) is given by,

E(y, J) =
mω2R2

0

2
y2 +

J(J + 1)h̄2

2mR2
0(y + 1)2

= ay2 +
b

(y + 1)2
.

Notice that the ratio,
b

a
∼ rotational energy

vibrational energy
¿ 1.

Now we minimize E w.r.t. y, to get the equation

ymin(1 + ymin)3 =
b

a
.

6



Since both b/a ¿ 1 and ymin = δR/R0 ¿ 1, we can slove the equation above order by order
in b/a. To the least order in the ratio b/a we get, ymin = b/a. [Note: To the next leading we
solve the quadratic equation 3y2 + y = b/a to get ymin = b/a − 3b2/a2. This comment is for
illustration purpose only. Result only upto leading order in b/a is required for part (b). Full
credit must be provided for solutions upto leading order in b/a.] Therefore,

Rmin = R0 + yminR0 = R0 +
J(J + 1)h̄2

m2ω2R3
0

.

(b) (3 points) Using the form Rmin = R0(1 + b/a), we get

EJ =
J(J + 1)h̄2

2mR2
min

=
J(J + 1)h̄2

2mR2
0(1 + b/a)2

=
J(J + 1)h̄2

2mR2
0

(
1− 2b

a
+O

(
b2

a2

))
.

Substituting for b = J(J + 1)h̄2/2mR2
0 and a = mω2R2

0/2 in the above expression we obtain,

EJ =
J(J + 1)h̄2

2mR2
0

− J2(J + 1)2h̄4

m3ω2R6
0

+ . . .

From this we readily obtain A = h̄2/2mR2
0 and B = −h̄4/m3ω2R6

0.

5. Adiabatic Spin Rotation (8 points)

The adiabatic theorem tells us that, provided we change the magnetic field slowly enough,
the particle will remain in the same (slowly varying) energy level provided that the particle
never reaches a point in its trajectory where energy levels become degenerate. (The proof
of the adiabatic theorem relies on being able to choose timescales larger than h̄/(∆E); when
∆E = 0, this is impossible. There is no way to suppress the transition amplitudes between
exactly degenerate states.) The residual field δ ~B = (Bx, By, 0) ensures that at t = B0/β, the
two spin states are still non degenerate. This is all that we need to know to conclude that at
tf the particle’s final state is | ↓〉, independent of the details of δ ~B, provided that we change
Bz slowly enough.

The closest splitting between the two energy levels occurs at t = B0/β. Here the difference
in the energy between the two states is ∆E = 2µ0|δB|, and so the shortest timescale of the
system is ts = h̄/(2µ0|δB|). The amount of time that the system spends in this “dangerous”
region is of the order of td = 2|δB|

β , since this is the length of time during which the residual
magnetic field δB is larger than the magnetic field B0−βt. We therefore identify the adiabatic
timescale as td. For the adiabatic theorem to apply, we must have td À ts, or

β ¿ µ0|δB|2
h̄

.

(Here I have dropped numerical factors of order unity.) This result shows why, in magnetic
traps, one does not allow the magnetic fields to be 0. When B = 0, the two spin states become
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Figure 3: The energy levels of the system without Bx.

degenerate, and the adiabatic theorem breaks down. This means that the spins can flip, and
atoms can leak out of the traps.

6. Engineering Adiabatic Transitions (12 points)

(a) (3 points) In the basis {|+〉, |0〉, |−〉}, the spin matrices are

Sx =
h̄√
2




0 1 0
1 0 1
0 1 0


 , Sy =

h̄√
2




0 −i 0
i 0 −i

0 i 0


 , Sz = h̄




1 0 0
0 0 0
0 0 −1


 .

These matrices satisfy [Si, Sj ] = iεijkh̄Sk, as any self-respecting set of angular momentum
matrices must.

(b) (6 points) The Hamiltonian has the form

H =



−2µ0(B0 − βt)− c −√2µ0Bx 0

−√2µ0Bx 0 −√2µ0Bx

0 −√2µ0Bx 2µ0(B0 − βt)− c


 .

We need to sketch the behavior of the energy levels of the system as we vary the time t. The
hierarchy of energies that we are given, µ0B0 À c À µ0Bx, tells us that we can get a rough
picture of the energy levels by temporarily ignoring Bx. Without the contributions of the
Bx fields, the energy levels of the system vary with time as shown in figure 3. Notice that if
Bx were 0, we could not use the adiabatic theorem to analyze this system, because it is not
applicable when the eigenvalues cross each other.
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Figure 4: Sketch of the evolution of the energy levels.

The contributions of the Bx term (which we can treat as a perturbation) become important
when the differences between the eigenvalues of H0 = − 2µ0

h̄ SzBz − c
h̄2 S2

z are small. We can
see from figure 3 that we will need to take the Bx perturbation into account at all three places
where the unperturbed energy levels intersect; the effect of the perturbation will be to lift the
(instantaneous) degeneracies at these intersections.

When βt = B0 − c/(2µ0), |0〉 and |−〉 are degenerate. To find the correction to the energy
levels from the nonzero Bx, we need to diagonalize the instantaneous Hamiltonian within the
degenerate subspace at this crossing point,

H = −
√

2µ0Bx

(
0 1
1 0

)
.

The eigenvalues of the above Hamiltonian are ±√2µ0Bx, and therefore the effect of the nonzero
Bx here is to open up a gap of width 2

√
2µ0Bx between the two energy levels.

When βt = B0, the energy levels |+〉 and |−〉 are degenerate. Diagonalizing the Hamiltonian
at t = B0/β tells us that a gap of 4µ2

0B
2
x/c opens up between the degenerate energy levels at

this point. Notice that this is only a small gap when c À µ0Bx.

Therefore, the effect of the magnetic field Bx is to open up gaps between energy levels that,
in the absence of Bx, would intersect. The energy levels of the system as a function of time
look like the sketch in figure 4.

(c) (3 points) If we begin in the state |−〉 at t = 0, then the smallest gap we will encounter as
we vary the magnetic field has a width of ∆E = 2

√
2µ0Bx. The statement µ0Bx À h̄β/Bx in

the given hierarchy of energies is precisely the adiabatic condition for this gap, as we can see
by reasoning similar to what we used on problem 5. As before, the adiabatic timescale is the
amount of time that the system spends traversing the dangerous region near the small gap,
ta = Bx/β. This time needs to be much larger than the timescale determined by the energy
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difference, ts = h̄/∆E. This condition, ta À ts, is precisely the statement that µ0Bx À h̄β/Bx.
Therefore, the variation of the magnetic field is sufficiently slow compared to the gap for the
adiabatic theorem to apply. Thus, a particle that begins in the state |−〉 initially will follow
the top level in the sketch of figure 4 without making any transitions to other energy levels.
We can conclude that this particle will evolve to a state first approximately equal to |0〉 and
then |+〉.
To have this particle end up in the state |0〉, we could stop varying the magnetic field once we
reach the point t = B0/β.
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