
Quantum Physics III (8.06) Spring 2007
Solution Set 5

March 13, 2007

1. The Aharonov-Bohm effect on energy eigenvalues (20 points)

(a) (2 points) Using Stokes’ theorem,
∮

~A · d~l =
∫

~B · d~a, we find for a circular loop with
radius r < a

2πrAφ = B0πr2,

so within the cylinder we find Aφ = 1
2B0r. If r > a, Stokes’ theorem tells us

2πrAφ = B0πa2,

so Aφ = B0a
2/(2r) outside the cylinder.

(b) (2 points) By assumption, the particle can only move on a ring, so only pφ appears in H

and the radius is fixed to be b. Thus for our case the Hamiltonian is

H = − ~
2

2m

1
b2

(
∂

∂φ
− iqΦ

2π~c

)2

,

where I have used Aφ = Φ/(2πb).

(c) (2 points) The Schrodinger equation we would like to solve is

− ~2

2mb2

(
∂

∂φ
+

iΦ
Φ0

)2

ψ = Eψ,

where Φ0 = hc
|q| and we take only the positive value of the charge (Note that for an electron

|q| = −q = e). Putting ψ = einφ, for n an integer to satisfy the boundary conditions on ψ in
this gauge, we find ~2

2mb2 (n + Φ/Φ0)2ψ = Eψ, and thus

E =
~2

2mb2

(
n +

Φ
Φ0

)2

.

(d) (3 points) We must always have
∮

~A ·d~l = Φ for a circular path surrounding the cylinder.
Now, if ~A = ~∇f ,

∫ b

a
~A · d~l = f(b)− f(a). We can consider breaking the circular path into two

pieces,

Φ =
∫ π−ε

−π+ε

rAφ dφ +
∫ −π+ε

π−ε

rAφ dφ.

When we take the limit ε → 0, the second term on the right hand side disappears because φ is
oriented in the counter-clockwise direction. The first term can be written in terms of f , giving

Φ = f(r, π − ε)− f(r,−π + ε)

in the limit ε → 0. The simplest choice for f(φ) is

f =
φ

2π
Φ. (1)
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(e) (3 points) We make the gauge transformation ~A → ~A− ~∇f = ~A′, ψ → e−iqf/(~c)ψ = ψ′,
using the f of equation (1). The Schrodinger equation in the new gauge is

− ~2

2mb2

∂2

∂φ2
ψ′ = Eψ′. (2)

This is a free particle Schrodinger equation, but it is only valid in the region −π+ε < φ < π−ε

(as f is only defined in that region).

(f) (3 points) First, we express ψ′(±(π − ε)) in terms of ψ(±(π − ε)):

ψ′(π − ε) = e−iqΦ(π−ε)/(2π~c)ψ(π − ε) → e−iqΦ/(2~c)ψ(π − ε)

ψ′(−(π − ε)) = eiqΦ(π−ε)/(2π~c)ψ(−(π − ε)) → eiqΦ/(2~c)ψ(−π + ε).

Thus
ψ′(π) = e−iqΦ/~cψ′(−π), (3)

so the gauge transformed wave function is not single valued at φ = π.

(g) (3 points) The Schrodinger equation (2) is a free particle equation, so we expect the
solutions to be ψ′(φ) = eikφ. Using this guess for ψ′, we find

~2k2

2mb2
ψ′ = Eψ′.

The boundary condition (3) determines the allowed values of k:

eikπ = e−iqΦ/~ce−ikπ,

so 2π(k + n) = −qΦ
~c for any integer n. Therefore, k = −qΦ

2π~c + n = Φ
Φ0

+ n, and the allowed
energy eigenvalues are

E =
~2

2mb2

(
Φ
Φ0

+ n

)2

. (4)

These are precisely the same energies as those found in the original gauge, equation (1).

(h) (2 points) A plot of the energy eigenvalues as a function of Φ is shown in figure 1. In
figures 2 and 3, the lowest and second lowest eigenvalues have been plotted as a function of
Φ. As we increase Φ, some energies increase while others decrease; however, the energy levels
intersect in such a way that the lowest, second-lowest, etc., energies are periodic in Φ, with
period Φ0 = 2π~c

e = 2πe
α = 2π× 137e, the flux quantum. There is no effect from the magnetic

field when the flux enclosed by the particle is a multiple of the flux quantum, or in other words,
if B0 = 0, Φ0/(πa2), 2Φ0/(πa2), . . .. The overall energy spectrum is insensitive to the integer
part of Φ/Φ0 due to the periodicity; we cannot tell the difference between the presence of one
flux quantum and the presence of 2 million.
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Figure 1: The energy spectrum as a function of Φ.

2. The fractional quantum Hall effect (5 points)

As we increase the flux going through the solenoid, we increase the magnetic field, and thus
the vector potential is time-dependent.

This in turn induces an electric field, the magnitude of which is Eφ = − 1
c

∆Aφ

∆t = −∆Φ
∆t

1
2πrc .

The azimuthal field Eφ in addition to azimuthal current creates radial current flow due to Hall
effect. The radial current is j = ∆Q

∆t∆l = σE. Integrating this over φ, we find the charge that
flows across circle of radius r:

∆Q = σ∆Φ
∫

dφ
r

2πrc
=

σΦ0

c
.

We learned on the previous problem set that RH = σ−1
H , so using σH = e2/3h, we find

Q =
e

3
.

The fractional charge of the excitation leads to a lot of very interesting physics; one notable ef-
fect is that the quasi-particles behave neither as fermions or as bosons, but rather as something
in between (“anyons”).

3. Perturbation of the three-dimensional harmonic oscillator (13 points)

(a) (2 points) Creation and annihilation operators are given by, a†i and ai respectively. Our
system consists of three independent harmonic oscillators, so E|n1, n2, n3〉 = ~ω(n1 + n2 +
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Figure 2: The lowest energy eigenvalue.

n3 + 3
2 )|n1, n2, n3〉. Number operators are given by, Ni = a†iai. If E = 5

2~ω, then
∑

Ni = 1,
so there are three possible states: |1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉. We will take these states to be our
basis (i.e., in this order).

(b) (2 points) Using xi =
√

~
2mω (ai + a†i ) and pi = i

√
~mω

2 (a†i − ai),

H1 = K
i~
2

[
(a3 + a†3)(a

†
1 − a1)− (a1 + a†1)(a

†
3 − a3)

]

= −iK~(a†3a1 − a†1a3).

(c) (2 points) The perturbation H1 maps states 1 and 3 into each other, and annihilates state
2, so its matrix representation is given by

H1 = iK~




0 0 1
0 0 0
−1 0 0


 .

(d) (3 points) We can see immediately from part (c) that |0, 1, 0〉 is an eigenvector of H1 with

eigenvalue 0. We now only need to diagonalize iK~

(
0 1
−1 0

)
. The eigenvalues of this two

by two matrix are ±K~, with corresponding eigenvectors 1√
2
(|1, 0, 0〉 ∓ i|0, 0, 1〉). All of these

eigenvectors are also eigenvectors of H0, so the total eigen-energies are 5
2~ω + K~, 5

2~ω−K~,
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Figure 3: The second-lowest energy eigenvalue.

and 5
2~ω. These energies are all distinct, so the degeneracy has been completely lifted by the

perturbation.

(e) (2 points) Using the eigenvectors found in (d) as a basis, the total Hamiltonian has the
following matrix representation in the degenerate subspace that we are studying:

H0 + H1 = ~




5
2ω + K 0 0

0 5
2ω −K 0

0 0 5
2ω


 .

(f) (2 points) Since H1 does not change the total number of excitations, H0H1|ψ〉 = H1H0|ψ〉.
In other words, [H0,H1] = 0, and therefore they are simultaneously diagonalizable (as we
saw in the previous parts of the problem). The fact that H0 and H1 commute means that
〈φ|H1|ψ〉 = 0, since we know |ψ〉 and H1|φ〉 are energy eigenstates with different energy
eigenvalues.

4. A delta-function interaction between two bosons in an infinite square well (8
points)

In this problem we consider the potential

V (x) =





0 if 0 ≤ x ≤ a,

∞ otherwise.
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The energy eigenvalues are

En =
~2k2

n

2m
=

n2π2~2

2ma2
, (5)

and the corresponding wave functions are

ψn =

√
2
a

sin
(nπ

a
x
)

. (6)

(a) (4 points) The particles are independent, so to find the two particle wave functions we
simply multiply the free wave functions given in (6) and symmetrize:

ψground = ψ1(x1)ψ1(x2) =
2
a

sin
(πx1

a

)
sin

(πx2

a

)

ψfirst =
1√
2

[ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)]

=
√

2
a

[
sin

(πx1

a

)
sin

(
2πx2

a

)
+ sin

(
2πx1

a

)
sin

(πx2

a

)]
.

The energies of these wave functions are the sums of the free particle energies given in (5),

Eground =
~2π2

ma2
(7)

Efirst =
5~2π2

2ma2
. (8)

(b) (4 points) The first order correction to the ground state energy is

∆E
(1)
ground = −aV0

∫ a

0

dx1dx2|ψ1(x1)|2|ψ1(x2)|2δ(x1 − x2)

= −aV0

(
2
a

)2 ∫ a

0

dx1 sin4
(πx1

a

)

= −3V0

2
.

The first order correction to the first excited state energy is

∆E
(1)
first = −aV0

∫ a

0

dx1dx2

∣∣∣∣
1√
2
(ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2))

∣∣∣∣
2

δ(x1 − x2)

= −2aV0

(
2
a

)2 ∫ a

0

dx sin2
(πx

a

)
sin2

(
2πx

a

)

= −aV0
16
a2

∫ a

0

dx cos2
(πx

a

)
sin4

(πx

a

)

= −2V0.

Note that the shifts are independant of a.

5. Anharmonic oscillator (14 points)

(a) (3 points) The ground state wave function is even, while the perturbation λx3 is odd.
Therefore the integral

∫
dx |ψ0|2λx3 vanishes, and the first order contribution to the ground

state energy is zero.
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Figure 4: The potential λx3.

To calculate the second-order shift, we need the expectation value 〈n|(a+a†)3|0〉. We calculate
(a + a†)3|0〉 = 3|1〉 +

√
6|3〉, so the only contributions to the shift in the ground state energy

will come from the states |1〉 and |3〉. We find, therefore,

∆E
(2)
0 = λ2

(
~

2mω

)3 ∑

k>0

|〈k|(a + a†)3|0〉|2
E0 − Ek

= −λ2

(
~

2mω

)3
[

9
~ω

+
(
√

6)2

3~ω

]
,

which gives ∆E
(2)
0 = − 11λ2~2

8m3ω4 .

(b) (3 points) The first order correction to the ground state wave function is

ψ
(1)
0 =

∑
m

〈m|H ′|0〉
E0 − Em

|m〉.

As in part (a), the only contributions are from m = 3 and m = 1:

ψ
(1)
0 = − λ

~ω

(
~

2mω

)3/2
(

3|1〉+

√
2
3
|3〉

)
.

The ground state wave function is then, to first order, ψ0 = |0〉− λ
~ω

( ~
2mω

)3/2
(
3|1〉+

√
2
3 |3〉

)
.

(c) (3 points) A sketch of the potential is in figure 4. This potential is unbounded from below,
so there is no ground state – any state localized near x = 0 is unstable, as it will eventually
tunnel through the barrier. Perturbation theory does not account for the tunneling effects. It
is good for examining relatively small, localized changes in the potential, but not for the cases
like this, where the perturbation drastically changes the asymptotic behavior of the potential.
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Figure 5: The potential 1
2mω2x2 + λx4, with λ > 0.

The above qualitative argument is enough for full credit. However, it is nice to see quanti-
tatively what is going on. You learned in 8.04 how to compute the probability of tunneling
through a barrier. If you apply these methods to our problem, you will find that the probability
for the particle to tunnel from x = 0 to x = −mω2

2λ goes like exp(−const/λ2). This is nonzero,
but we cannot expand it as a Taylor series in λ. Thus, to any finite order in perturbation
theory, the probability of tunneling is zero.

(d) (5 points) We now take the perturbation to be H ′ = λx4. To calculate the first order
shift in the ground state energy, we need (a + a†)4|0〉 = 3|0〉+ 6

√
2|2〉+ 2

√
6|4〉. We find that

the first order shift in the ground state energy is

∆E
(1)
0 = 〈0|H ′|0〉 = λ

(
~

2mω

)2

〈0|(a + a†)4|0〉 = 3λ

(
~

2mω

)2

.

We sketch the behavior of the potential for positive and negative λ in figure 5.

If λ > 0, perturbation theory is a good approximation to the ground state, which “sees” a
region of the potential where λx4 ¿ mω2

2 x2. (Perturbation theory will not work so well for
higher states.) The contribution to the ground state energy at first order is positive, which
makes physical sense – we are confining the particles with a sharper potential, which suggests
that their energy should increase.

If, of the other hand, λ < 0, perturbation theory clearly fails. The change to the ground state
energy is negative, so perturbation theory does see that the overall energy will be lowered.
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Figure 6: The potential 1
2mω2x2 + λx4, with λ < 0.

However, as in part (c), perturbation theory doesn’t “know” about the change in the asymp-
totic behavior of the potential, and cannot inform us about the tunneling that will result.

In cases like this, where flipping the sign of the perturbation parameter alters the asymptotic
behavior of the perturbation, strictly speaking, the radius of convergence of perturbation theory
as a series in λ is zero. Therefore, even when λ > 0, perturbation theory is an asymptotic
expansion: it cannot capture all the physics, although it can still give us good information
about the first few terms in the series.
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