Quantum Physics III (8.06) Spring 2007
Solution Set 5

March 13, 2007

1. The Aharonov-Bohm effect on energy eigenvalues (20 points)

(a) (2 points) Using Stokes’ theorem, f/f dl = fé - dd, we find for a circular loop with
radius r < a
27T7“A¢ = Boﬂ'7"2,

so within the cylinder we find Ay = %Bor. If r > a, Stokes’ theorem tells us
27T7“A¢ = Boﬂ'a2,

so Ay = Boa?/(2r) outside the cylinder.

(b) (2 points) By assumption, the particle can only move on a ring, so only p,s appears in H

and the radius is fixed to be b. Thus for our case the Hamiltonian is

go (0 iy
2m b2 \ ¢ 2mhc

where I have used Ay = ®/(27b).

(¢) (2 points) The Schrodinger equation we would like to solve is

n2<a i

2
Tomb? + ) Y = EY,

26 " @

where &g = %‘T and we take only the positive value of the charge (Note that for an electron
lg| = —q = e). Putting ¢ = ™%, for n an integer to satisfy the boundary conditions on 1 in
this gauge, we find %(n + ®/®y)?% = Evp, and thus

h2 o\
E=—— ) .
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(d) (3 points) We must always have § A-dl’= ® for a circular path surrounding the cylinder.
Now, if A=V, f: A-dl = f(b) — f(a). We can consider breaking the circular path into two

pieces,
T—€ —Tm+e
b = / rAydo + / rAg do.

—7m+te€ T—¢€
When we take the limit € — 0, the second term on the right hand side disappears because ¢ is

oriented in the counter-clockwise direction. The first term can be written in terms of f, giving
‘I):f(ﬁﬂ—e)_f(ﬁ—ﬂ‘*‘e)

in the limit € — 0. The simplest choice for f(¢) is

J= -0, (1)



(e) (3 points) We make the gauge transformation A A—Vf=A 10— e taf/(he)yy =y,
using the f of equation (1). The Schrodinger equation in the new gauge is
R 02
" 2mb? 092

V' = By (2)

This is a free particle Schrodinger equation, but it is only valid in the region —7+¢e¢ < ¢ < m—¢€
(as f is only defined in that region).

(f) (3 points) First, we express ¢'(£(m — €)) in terms of 1 (+(m — ¢)):

w/(ﬂ_ _ 6) — e—iq@(ﬂ—e)/(Qﬂ'hc)w(ﬂ_ _ 6) _ e—iq¢>/(2hc),¢(ﬂ_ _ 6)
’l/)/(—(’fr _ 6)) — eiq<1>(7r—e)/(271'?ic),¢(_(7T _ 6)) _ eiq@/(2hc),¢}(_7{+€).
Thus
1/)/(77) _ efiq@’/hcw/(_,rr), (3)

so the gauge transformed wave function is not single valued at ¢ = .
(g) (3 points) The Schrodinger equation (2) is a free particle equation, so we expect the
solutions to be 1’ (¢) = e**®. Using this guess for ¥/, we find
h%k?
2mb?

W = By,

The boundary condition (3) determines the allowed values of k:

6ik7r — e*iq'ib/hcefikﬂ'7
so 2n(k +n) = }—qf for any integer n. Therefore, k = ;ﬂqfi +n = % + n, and the allowed
energy eigenvalues are
R ?
E=—(— . 4
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These are precisely the same energies as those found in the original gauge, equation (1).

(h) (2 points) A plot of the energy eigenvalues as a function of ® is shown in figure 1. In
figures 2 and 3, the lowest and second lowest eigenvalues have been plotted as a function of
®. As we increase ®, some energies increase while others decrease; however, the energy levels
intersect in such a way that the lowest, second-lowest, etc., energies are periodic in ¢, with

= % = % = 27 x 137e, the flux quantum. There is no effect from the magnetic

period @
field when the flux enclosed by the particle is a multiple of the flux quantum, or in other words,
if By = 0,®¢/(ma?),2®q/(ma?),.... The overall energy spectrum is insensitive to the integer
part of ®/®y due to the periodicity; we cannot tell the difference between the presence of one

flux quantum and the presence of 2 million.
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Figure 1: The energy spectrum as a function of ®.

2. The fractional quantum Hall effect (5 points)

As we increase the flux going through the solenoid, we increase the magnetic field, and thus
the vector potential is time-dependent.

This in turn induces an electric field, the magnitude of which is Ey = —%% = —%27}%.

The azimuthal field Ey in addition to azimuthal current creates radial current flow due to Hall

effect. The radial current is j = % = oF. Integrating this over ¢, we find the charge that
flows across circle of radius r:
)
AQ:oAfb/dqﬁ T =2
27re c
We learned on the previous problem set that Ry = 0;117 so using o = €2/3h, we find
e
Q=<

The fractional charge of the excitation leads to a lot of very interesting physics; one notable ef-
fect is that the quasi-particles behave neither as fermions or as bosons, but rather as something

in between (“anyons”).

3. Perturbation of the three-dimensional harmonic oscillator (13 points)

(a) (2 points) Creation and annihilation operators are given by, a;r and a; respectively. Our

system consists of three independent harmonic oscillators, so E|ni, ne,n3) = hw(ng + ng +
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Figure 2: The lowest energy eigenvalue.

nz + %)|n1,n2,n3>. Number operators are given by, N; = aIai. If £ = %hw, then >~ N; = 1,
so there are three possible states: |1,0,0), |0,1,0), |0,0,1). We will take these states to be our

basis (i.e., in this order).
(b) (2 points) Using z; = {/52—(a; + al) and p; = iy/ h"%(al —a;),

ih
o= K2 [0+ a})(a} — )~ (a1 +a)(a} ~a3)

= —iKh(ala, —alas).

(c) (2 points) The perturbation H; maps states 1 and 3 into each other, and annihilates state

2, so its matrix representation is given by

H, =1Kh

o O O
o O =

(d) (3 points) We can see immediately from part (c) that |0, 1,0) is an eigenvector of H; with

0 1
eigenvalue 0. We now only need to diagonalize 1Kh L The eigenvalues of this two

by two matrix are +K#h, with corresponding eigenvectors %(\1, 0,0) F14/0,0,1)). All of these

eigenvectors are also eigenvectors of Hy, so the total eigen-energies are gfw + Kh, ghw — Kh,
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Figure 3: The second-lowest energy eigenvalue.

and %ﬁw These energies are all distinct, so the degeneracy has been completely lifted by the
perturbation.

(e) (2 points) Using the eigenvectors found in (d) as a basis, the total Hamiltonian has the
following matrix representation in the degenerate subspace that we are studying:

SJw+ K 0 0
H()+H1:h 0 %w—K O
0 0 %w

(f) (2 points) Since H; does not change the total number of excitations, HoH;|v) = Hy Hol|v).
In other words, [Ho, H1] = 0, and therefore they are simultaneously diagonalizable (as we
saw in the previous parts of the problem). The fact that Hy and H; commute means that
(¢p|H1lyp) = 0, since we know [¢) and Hp|¢) are energy eigenstates with different energy
eigenvalues.

4. A delta-function interaction between two bosons in an infinite square well (8
points)

In this problem we consider the potential

V() 0 ifo<x<a,
€Tr) =
oo otherwise.



The energy eigenvalues are

B R2k2 nPm’h?

2m  2ma?’
and the corresponding wave functions are

=y Zsin (2. (©)

(a) (4 points) The particles are independent, so to find the two particle wave functions we
simply multiply the free wave functions given in (6) and symmetrize:

(%)
a

1
wﬁrst =

o) [Y1(21)Y2(22) + 2(1)1 (72)]

V2 { L /TELN . (27rx2) . (27Tx1) . [T
= — [SIn ( ) S1n +smn | —— ] sin (—) .
a a a a a

¢ground = 1/)1 (xl)ﬂ)l ($2) = %sin <%Z1) sin

The energies of these wave functions are the sums of the free particle energies given in (5),

h2m?
Eground ma’ (7)
5h%m?
Eﬁrst 2ma2 (8)

(b) (4 points) The first order correction to the ground state energy is

BEQ g = Vo [ dodsalin(o) i) Po(e — 22)
0

2 a
2
= —alp () / dxy sin? (@)
a 0 a

_3h
-2

The first order correction to the first excited state energy is

2

1
— (5($1 — $2)

ﬁ(% (z1)a(w2) + Y2(21)91(22))

2\? [@ Lo (TT\ . o [ 27x
—2aVy | — dx sin (—) sin
a 0 a a

1 a
= —aVofS/ dz cos® (ﬂ> sin? (E)
a? J, a a

= —2V.

rst

a
AE —aVy / day da
0

Note that the shifts are independant of a.

. Anharmonic oscillator (14 points)

(a) (3 points) The ground state wave function is even, while the perturbation Az? is odd.
Therefore the integral [ dz[io|?Az® vanishes, and the first order contribution to the ground
state energy is zero.
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Figure 4: The potential Az>.

To calculate the second-order shift, we need the expectation value (n|(a+a')3|0). We calculate
(a+a*)3|0) = 3|1) 4+ v/6]3), so the only contributions to the shift in the ground state energy
will come from the states |1) and |3). We find, therefore,

@ el b\ la+a0))R L n N9 (V6)?
o= () B = ) [ ]

2mw Ey— Ej 2mw hw 3hw

which gives AE(()Q) = — éz‘; fi

(b) (3 points) The first order correction to the ground state wave function is

1 _ N~ (mlH'|0)
wO _ZEO _Em‘m>.

m

As in part (a), the only contributions are from m = 3 and m = 1:

SR (277;;)3/2 <3|1> + \/§|3>> .

The ground state wave function is then, to first order, ¢y = [0) — 2 (52 )3/2 <3|1> + \/% |3>)

fw \ 2Zmw
(c) (3 points) A sketch of the potential is in figure 4. This potential is unbounded from below,
so there is no ground state — any state localized near x = 0 is unstable, as it will eventually
tunnel through the barrier. Perturbation theory does not account for the tunneling effects. It
is good for examining relatively small, localized changes in the potential, but not for the cases

like this, where the perturbation drastically changes the asymptotic behavior of the potential.



Figure 5: The potential %mw2x2 + Az, with A > 0.

The above qualitative argument is enough for full credit. However, it is nice to see quanti-
tatively what is going on. You learned in 8.04 how to compute the probability of tunneling
through a barrier. If you apply these methods to our problem, you will find that the probability

for the particle to tunnel from ¢ =0 to z = — "5“;\2 goes like exp(—const/A?). This is nonzero,

but we cannot expand it as a Taylor series in A. Thus, to any finite order in perturbation

theory, the probability of tunneling is zero.

(d) (5 points) We now take the perturbation to be H' = Azr*. To calculate the first order
shift in the ground state energy, we need (a + a')*|0) = 3]0) + 61/2]2) + 21/6/4). We find that
the first order shift in the ground state energy is

AESD = (0] H'|0) = A (QWZW)Q (0](a+a')*|0) = 37 (h>2 .

2mw

We sketch the behavior of the potential for positive and negative A in figure 5.

If A > 0, perturbation theory is a good approximation to the ground state, which “sees” a
%m? (Perturbation theory will not work so well for

higher states.) The contribution to the ground state energy at first order is positive, which

region of the potential where \z* <

makes physical sense — we are confining the particles with a sharper potential, which suggests

that their energy should increase.

If, of the other hand, A < 0, perturbation theory clearly fails. The change to the ground state
energy is negative, so perturbation theory does see that the overall energy will be lowered.



Figure 6: The potential %mw2x2 + Az, with A < 0.

However, as in part (c), perturbation theory doesn’t “know” about the change in the asymp-
totic behavior of the potential, and cannot inform us about the tunneling that will result.

In cases like this, where flipping the sign of the perturbation parameter alters the asymptotic
behavior of the perturbation, strictly speaking, the radius of convergence of perturbation theory
as a series in A is zero. Therefore, even when A\ > 0, perturbation theory is an asymptotic
expansion: it cannot capture all the physics, although it can still give us good information

about the first few terms in the series.



