Quantum Physics III (8.06) Spring 2007
Assignment 2

Feb 12, 2006 Due Wednesday Feb 21, 2007, 7pm

e Please remember to put your name and section time at the top of your
paper.

Readings

e The qualitative behavior of solids is dictated to a large extent simply by the
fact that the electrons feel a periodic potential. The example we discussed in
lecture is called the “tight binding model.” The other classic example is the
Dirac comb, which Griffiths treats on pages 226-228. You should read through
Griffiths’ treatment.

The reading assignment for the next two weeks is:

e Supplementary notes on Canonical Quantization and Application to a Charged
Particle in a Magnetic Field by Prof. Jaffe.

e Griffiths Section 10.2.4 is an excellent treatment of the Aharonov-Bohm effect,
but ignore the connection to Berry’s phase for now. We will come back to this
later.

e Quite remarkably, given its length, Cohen-Tannoudji never mentions the Aharonov-
Bohm effect. It does have a nice treatment of Landau levels, however, in Ch.
VI Complement E

e Those of you reading Sakurai should read pp. 130-139.
Problem Set 2

1. More on the tight-banding model (15 points)

Consider an electron moving in a one-dimensional periodic potential generated
by ions sitting at x = na with n an integer running from —oo to +o0o. The
quantum state |n) describes the wave function of the electron localized in the
potential well of the ion at © = na. We assume that |n) forms an orthonormal

basis, i.e
(nlm) = dpm, Y _In)(n[=1



The Hamiltonian for the system is

H:n:z:oo Egln)(n| — Aln —1){(n|] — A|n+ 1){n|

n=—oo

where the first term describes the energy of the electron in a given potential
well and the second and the third terms describe tunnelling to neighboring ions.
This is the tight-banding model discussed in lecture.

Define the “translation” operator 1" by:
Tln) = [n+1) 1
You should check for yourself that T" commutes H.
(a) (3 points) Find the state |#) which is an eigenstate of 7" with eigenvalue

exp(—if), i.e.
T|0) = e |6), —T<f<m. (2)

Explain why 6 is real and can be taken to lie in the range stated above.
(Note: in terms of the notation of lecture 6 = ka.)

(b) (2 points) Check that (by choosing an appropriate normalization constant
for |9))
010" = 2m6(60 — 0') (3)

Hint: you will find the following formula useful
> e =2mé(x) (4)

(¢) (2 points) Express |n) in terms of |6).

(d) (2 points) In lecture we showed that |0) are also energy eigenstates. Find
their energy eigenvalues.

(e) (3 points) Suppose at ¢t = 0, the wave function of the electron is given by
[V (t=0)) =[n=0) (5)

i.e. localized in the potential well of the ion at x = 0. Find the probability
P, (t) that the electron lies in a state localized at = na at time t, i.e.

V() = [n) (6)

Hint: you will find the following formula useful
1 g7 , ,
Zan(Z) — % Lﬂ do ezzcos@—i—zn@ (7)

where J,, is a Bessel function.



(f) (2 points) Find the behavior of P,(t) for ¢ — 0 and t — oo and explain
why you find the behaviors physically reasonable.

(g) (1 point) Using result of (d), prove the following identity of Bessel functions
Jo(2) +23 Jo(z) =1 (8)
n=1

PS: (read the following only after you finish the problem)

e |n) are position eigenstates while |#) can be considered as “momen-
tum” eigenstates. It is amusing that here position eigenstates are
discrete while momentum eigenstates are continuous. (Compare with
the situation for a particle inside an infinite square well.)

e From part (e), you should find that the time scale for an electron at
x = 0 to tunnel to other lattice sites is of order O(1/A), which can
be very large as A is typically very small. This is consistent with our
intuition that if the tunnelling rate is small (i.e. tight binding), it
would be hard for a trapped electron to escape.

e The energy eigenstates |0) are, however, always delocalized no matter
how small A is (the essence of Bloch theorem). This has to do with
that when A = 0, the energy spectrum are infinite degenerate (i.e. all
states |n) have the same energy and so do arbitrary linear superpo-
sitions of them including |0)), a fact you will appreciate better after
you learn degenerate perturbation theory in a few weeks.

e Although I do not ask in the problem, it will be instructive for you to
plot P,(t) as a function for ¢ for different n.

2. Analysis of a general one-dimensional periodic potential (28 points)

Consider a one-dimensional periodic potential U(z) that we shall choose to view
as the sum of lots of identical potential barriers v(z) of width a, centered at the
points x = na, where n is an integer.

We shall require v to be even, that is v(x) = v(—=z), but other than that we
shall allow the shape of the barrier to be arbitrary. v(z) = 0 for |z| > a/2. In
pictures, v(x) looks like:
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The periodic potential is then given by

and looks like:

> X

-2 N af xaf;

Before we analyze U, let us analyze v. For any energy E > 0, there are two lin-
early independent solutions to the Schrodinger equation with the single barrier
potential v(x). One, which we shall call 1., (x) describes a plane wave incident
from the left:

Yr(x) = exp(ikx) +rexp(—ikzr), =< —a/2
= texp(ikx) , r>a/2, 9)
where k is related to E by E = h*k?/2m. We shall not need the form of 1) where

the potential is nonzero. The other solution with the same energy describes a
wave incident from the right:

Yr(z) = texp(—ikzx) , < —a/2
= exp(—ikz) + rexp(ikz) , = >a/2, (10)
with the same reflection coefficient r and transmission coefficient ¢ as in (9)
because v(z) is even.

We can write the complex number ¢ in terms of its magnitude and phase as
t = [t| exp(id) , (11)

where 9 is a real number known as the phase shift since it specifies the phase of
the transmitted wave relative to the incident one. Conservation of probability
requires that

t]? +|r]> = 1. (12)

To this point, we have reviewed 8.04 material and established notation.



(a) (2 points) Let ¢ and 19 be any two solutions of the Schrodinger equation

”

" om da?

+v(x)hs = By

with the same energy. Define the “Wronskian” of these two solutions by

W (11, ) = () s (1) — ¥ () ()

Prove that W is independent of x by showing that dW/dz = 0.

(b) (2 points) By evaluating W (4, 1},), prove that rt* is pure imaginary, so
r must have the form
r = %i|r| exp(id) (13)

where 0 is the same as in (11).

(c) (6 points) Now, we begin our analysis of solutions of the Schrodinger equa-
tion in the periodic potential U. Since U = v in the region —a/2 < z <
a/2, in that region any solution to the Schréodinger equation with potential
U must take the form

W(z) = App(z) + Bip(z) , —a/2<z<a/2, (14)
with 1, and 15 given by (9) and (10). Bloch’s theorem tells us that
U(x +a) = exp(iKa)y(z)
and, with ¢/ = dip/dz,
W (x4 a) = exp(iKa) (x) .

By imposing these conditions at x = —a/2, show that the energy of the
electron is related to K by

2 2

- : 1 ,
5 exp(ika) + 5 exp(—ika) (15)

cos Ka =

with k specifying the energy via
E =h*k*/2m .

[Note that some of you may succeed in deriving an expression relating all
the quantities in (15) — and no other quantities — but then not succeed
in reducing your expression to the form (15). If so, you will not lose many
points. And, make sure to use (15), rather than whatever you obtain, in
the following parts.|



(d) (2 points) Show that as a consequence of (12), (13) and (15) the energy
and K of the Bloch electron are related by

cos(ka + 9)

T (16)

cos Ka =
Note that |t| is always less than one, and becomes closer and closer to
one for larger and larger k because at high incident energies, the barrier
becomes increasingly less effective. Because |t| < 1, at values of k in the
neighborhood of those satisfying ka 4+ 6 = n7, with n an integer, the right
hand side of (16) is greater than one, and no solution can be found. The
regions of F corresponding to these regions of k are the energy gaps.

(e) (5 points) Suppose the barrier is very strong, so that |t| =~ 0, |r| ~ 1. Show
that the allowed bands of energies are then very narrow, with widths of
order |t|. [Note: this is the tight-binding case, discussed in lecture. This
is the case that applies to a deeply bound atomic energy level which in
a crystal becomes a narrow band. In this case, because the energy level
is well below the top of the barrier between single-atom potential wells,
“transmission” requires tunnelling, meaning that |¢| is small.]

(f) (5 points) Suppose the barrier is very weak (so that || ~ 1, |r| =~ 0,
9 ~ 0). Show that the energy gaps are then very narrow, the width of the
gap containing k = n7/a being 2nnh?|r|/ma®. [Note: this shows that the
continuum states — namely those whose energies are above the top of the
barriers — are also separated into bands. The gaps between the bands get
narrower and narrower for higher and higher energy continuum states. |

(g) (6 points) Show that in the special case where v(z) = +ad(z) where §(x) is
the Dirac delta function — i.e. the Dirac comb model discussed in Griffiths
P-226-228 — the phase shift and transmission coefficent are given by

h2k
cotd = ———
mao
and
|t| = cosd

and that (16) becomes the expression derived in Griffiths.

3. Classical motion in a Magnetic Field (3 points)

Consider a particle of mass m and charge ¢ moving along a trajectory Z(t)
through a constant magnetic field along z-direction, i.e. B, = B, = 0, B, =
B = const. Classically in the x — y plane the particle travels in a circle around
a “center of orbit” with an angular velocity w;, given by

_4B

=3 (17)

wr



Suppose that the “center of orbit” has coordinates (X,Y’). Show that X,Y can
be expressed in terms of the coordinates (z,y) and the velocities (v,,v,) of the

particle as
v Vg
X=z+-2, Y=y——. (18)
Wi, Wi,

. Gauge Invariance and the Schrédinger Equation (14 points)

The time dependent Schrédinger equation for a particle in a electromagnetic
field given by

9] 1 - R 2
h(;f — o -V = LA@) w@n +a@uEn . (19

(a) (4 points) Consider

d(Z,t) = o(Z,t)+-——(T,1) . (20)

(A, ¢) and (A, ¢) describe the same E and B. Show that if ¢ (Z, ) solves
the Schrodinger equation with A, ¢ (which we will call “unprimed gauge”),
then

V(1) = e (—1L 10 ) 07,1 1)

solves the Schrodinger equation with A, ¢ (which we will call “primed
gauge” ).

(b) (10 points) We say an operator O gauge invariant if (¢)|O|¢) is gauge inde-
pendent for any |¢) and |¢). Are the following operators gauge invariant?
Give reasoning or derivation for your answers.

i@
i
iv. the Hamiltonian H (assuming that f is time-independent)

v. Energy eigenvalues (assuming that f is time-independent)



